Effect of Covid-19 Lockdown on the Physical Activities and Nutrition Status of Children (10-12 Years)

Ansari Simmya and V Amritha

1MSc., St. Joseph’s College for Women, Department of Homescience, Alappuzha, Kerala 688001, India. E-mail: simmyansari14@gmail.com
2MSc., St. Joseph’s College for Women, Department of Homescience, Alappuzha, Kerala 688001, India. E-mail: amrithav00@gmail.com

ABSTRACT

Background: The COVID 19 lockdown has influence the physical activity of school going children due to closure of school. During the shutdown, there may be shifted towards unfavorable dietary habits, such as increased calorie intake, more frequent snacks, decreased fresh fruit, and vegetable consumption, and weight gain. Aims: The present study was conducted in 100 school going children of age group between 10-12 years from Kannur district, to find out the effect of covid-19 lockdown on the physical activities and nutrition status. Materials and Method: Purposive sampling method was used. The data regarding general profile and socio-economic status of the samples was collected. The nutritional profile of the samples was assessed by anthropometry and dietary methods using a structured Google form. To assess sleeping quality of school going children, Pittsburgh Sleep Quality Index (PSQI) was used. Results: Majority (82%) of samples has noticed significant change in their body weight; out of 82 samples, majority (98%) noticed an increase in their body weight. There was a significant (P<0.01) change in dietary behavior between before lockdown and after lockdown. Lockdown introduced a significant (P<0.01) change in physical activity before lockdown and after lockdown. Majority (99%) samples have good quality of sleep during lockdown. Conclusion: Physical activity of children negatively influenced by COVID 19 lockdown and improved their nutritional status during lockdown.

Keywords: COVID 19, Physical activity, Sleep quality

INTRODUCTION

COVID-19 has had a significant impact on people’s lives all over the world, especially children and adolescents. Isolation and social distancing have been used all over the world to defend against the possibility of COVID-19 infection. Global school and college closures have harmed approximately 91% of the world’s student population and disturbances in their education, physical activity, and socialization opportunities, children and adolescents who are restricted to their homes experience confusion and distress.

WHO defined as a person between the ages of 10 and 19 is adolescent. Of the world’s 1.2 billion teenagers, about 85% live in developing countries, and the rest of the developed world. It is a key decade in the course of life that has implications for the health of adults, the socio-economic wellbeing of a nation, and even the health of future children. Adolescents comprise 16% of the world’s total population.

As per Census 2011, India has 13.59% (16.45 Cr) of its population with a population of 121.1 Cr, in the age group 0-6 years, and in the age group 0-14 years, 30.76% (37.24 Cr).

A physical activity characterizes as anybody movement that requires energy expenditure provided by skeletal muscles. The health advantages of a physically active lifestyle are well known during adolescence. They include enhanced

cardiorespiratory and muscular fitness, metabolic health of the bone and cardio, and beneficial impacts on weight status. For children and adolescents, 60 minutes of everyday physical activity should range from mild to intense, and recreational screen time should be restricted for a healthier lifestyle (ST).[8]

Nutritional status is an important index, especially in children, for measuring the quality of life. Knowing the nutritional condition of children in this regard has far-reaching consequences for enhancing the growth retardation of future generations, scholastic backwardness, and decreased work ability growth and development of teenagers is closely related to the diet, they obtain during childhood and adolescence. Any individual’s adequate nutrition is determined by two factors. The first is the sufficient availability of food regarding both quantity and quality, which is based on socio-economic status, food habits, cultural customs, and food allocation. The second aspect is the food can be digested, absorbed, and used. Infections and metabolic disorders can impede this capacity.[9]

Since many physiological, cognitive, and psychological processes mature sharply during adolescence and create an associated risk of morbidity, as well as many other significant maturation sleep changes and changes in many developmental functions, adolescence is characterized as a complex and especially vulnerable time.[10] For optimum functioning, it is recommended that adolescents require an average sleep time of 9 hours/night, i.e., 8.5-9.25 hours.[11] Lockdown in the aftermath of the COVID-19 pandemic appears to have drastically altered various aspects of students’ lifestyles, especially by and screen time and even sleep duration and pattern.[12]

There is no uncertainty that food accessibility and availability can be impacted during periods of confinement, which in turn affects diet efficiency. Diet can affect many areas, but immune status can be affected most seriously. During the shutdown, there may be shifted towards unfavorable dietary habits, such as increased calorie intake, more frequent snacks, decreased fresh fruit, and vegetable consumption, and weight gain. During lockdown social infraction between children and surrounding were decline, which ultimately results in development of various psychological factors such as stress, anxiety, anger, etc. As a consequence, these adverse activities substantially worsened disrupted sleep patterns and insomnia, unhealthy eating habits, reduced physical activity levels and increased sedentary behaviors. Hence, this study attempts to assess the change in physical activity, nutritional status and sleeping pattern of school going children before and during the lockdown of covid-19 pandemic.

SUBJECTS AND METHODS

Selection of Samples
A total of 100 samples of school going children between the ages of 10-12 years were selected using purposive sampling method from Tholambra U P School in Kannur district, Kerala.

Data Collection of Tool
The data was collected using the Google form tool. Google Forms is a survey administration tool that’s included in Google’s free, web-based Google Docs Editors package.

Google forms include personal profile of the school going children (age, sex, educational status of parents, occupation of parents, monthly income of the family), socio-economic details, assessment of sleeping quality, assessment of physical activities, anthropometric measurements and dietary pattern.

Anthropometric Assessment
“Anthropometry is the science of measuring the human body’s proportions. It is one of the methods for determining nutritional status, including biological, clinical, and dietary evaluations.[13] The sample’s height was determined using a stadiometer. The standing height was measured with the subject standing upright and feet together, without any shoes on. The head should be upright, the head board should be kept securely in place, and the final position should be taken as the reading. A weighing machine was used to determine body weight. The subject was asked to stand without shoes on the weighing machine and the weight was registered in kilograms. The samples were asked to monitor height and weight before and after lockdown. The samples have been following a frequent height and weight checkup from the school so it was easy to obtain their weight before lockdown. After 7 months of lockdown they were asked to monitor their height and weight for research purpose. BMI is a weight-to-height ratio-based anthropometric measure. It is used to categories malnutrition in adults who are not pregnant or postpartum. BMI is calculated by multiplying a person’s weight in kilograms by the square of their height in meters. You’ll need to convert the measurements from centimeters to meters (100 cm = 1 meter).[14] BMI before and after lockdown were calculated and classify according to BMI percentile range table (Developed by the NCHS collaborated with the National Center for Chronic Disease Prevention and Health Promotion, 2000) where BMI less than 5th percentile were considered as underweight and BMI between 5th-85th percentile were grouped as normal. BMI between 85th-95th percentile had grouped as overweight and BMI greater than >95th percentile were grouped as obese.
RESULTS

Basic Details

Out of 100 samples 51% were boys and 49% were girls. About 58% of samples family monthly income was between Rs. 10000 and 25000. Majority (91%) of samples family economic condition were affected by COVID 19 lockdown.

Anthropometric Changes Before and During the COVID19 Lockdown

Majority (82%) of samples has noticed significant change in their body weight; out of 82 samples, majority (98%) noticed an increase in their body weight (36.58 ± 12.31 Kg) with calculated t-value -12.190 and P-value < 0.05 it indicates a significant change in body weight before and after lockdown.

The mean BMI before lockdown was 16.707 ± 5.527 and mean value after lockdown 17.38 ± 5.343 with calculated t-value -6.142 and P-value <0.05; a significant change in BMI before and after lockdown. The calculated Pearson Chi-square value is 132.312 with p-value less than 0.001 [Table 1]. So there is a significant association between BMI change and lockdown due to COVID-19. Behavioral and environmental determinants have been evaluated across all age groups, including infants, during the COVID-19 pandemic. Due to school closures, there was a decrease in structured physical activity, an increase in sedentary behaviors and screen time, and a greater probability of stress-induced indulgence of high calorie dense and sugary foods, all of which led to a higher risk of weight gain.

Change in Physical Activity Before and During the COVID19 Lockdown

COVID 19 lockdown downgraded the physical activity of school children. 46% of respondents are not engaged in physical activity in before the lockdown. During the lockdown there are 58% respondents are not doing any physical activity.

Table 1: Influence of Lockdown on Body Weight

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before Lockdown</th>
<th>After Lockdown</th>
<th>Paired Mean Differences</th>
<th>T value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (Kg)</td>
<td>34.14</td>
<td>12.031</td>
<td>36.58</td>
<td>12.313</td>
<td>-2.44</td>
</tr>
<tr>
<td>BMI (Kg/m²)</td>
<td>16.707</td>
<td>5.527</td>
<td>17.378</td>
<td>5.343</td>
<td>-0.671</td>
</tr>
</tbody>
</table>

Note: Paired Samples Test, **Significant at 0.01 level.
(minutes/day) was 175.204 with p-value less than 0.001. So there is a significant change in physical activity (minutes/day) before lockdown and during lockdown. The calculated Pearson Chi-square value of physical activity (Time/week) was 97.042 with p-value less than 0.001. So there is a significant difference in physical activity (Time/week) between before lockdown and during lockdown [Table 2]. Staying at home can lead to a reduction in leisure and athletic activities as well as a rise in time spent in front of screens (cell phones, televisions, laptops, and tablet computers), all of which can adversely affect PA and contribute to this population’s sedentary lifestyle.[18]

Change in Dietary Habit Before and During the COVID19 Lockdown

Out of 100 samples majority (71%) have good dietary habit during lockdown and before lockdown only 47% samples were with good dietary habit. The calculated Pearson Chi-square value is 35.387 with p-value less than 0.001. So there is a significant change in dietary habit between before lockdown and during lockdown [Table 2].

Food Frequency of Samples

All the samples (100%) were taking cereals daily before and during lockdown and daily intake of pulses where also remains same before and during lockdown. Majority (43%) of them were taking green leafy vegetables occasionally before lockdown and it reduced by 14% during lockdown. All the samples were included other vegetables daily in their diet before and during the lockdown. Majority of the samples included fruits weekly in their diet before and during lockdown. Most of the samples were consuming fish and egg weekly. There is slight increase (4%) in the daily intake of milk and milk product compared to before lockdown [Table 3].

24 Hour Nutrient Intake of Subsamples

On comparing the nutrient intake of study sample with the RDA (2020) it was seen that samples (both boys and girls)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Pearson Chi-Square</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>132.312</td>
<td>0</td>
</tr>
<tr>
<td>Engaged physical activity (minutes/day)</td>
<td>175.204</td>
<td>0</td>
</tr>
<tr>
<td>Engaged physical activity (times/week)</td>
<td>97.042</td>
<td>0</td>
</tr>
<tr>
<td>Dietary habit</td>
<td>35.387</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Abbreviation: BMI - Body Mass Index.

<table>
<thead>
<tr>
<th>Food Items</th>
<th>Before Lockdown</th>
<th>During Lockdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Pulses</td>
<td>51</td>
<td>45</td>
</tr>
<tr>
<td>Vegetables</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Green Leafy Vegetables</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>Fruits</td>
<td>10</td>
<td>57</td>
</tr>
<tr>
<td>Meat</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Chicken</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Egg</td>
<td>7</td>
<td>74</td>
</tr>
<tr>
<td>Fish</td>
<td>31</td>
<td>59</td>
</tr>
<tr>
<td>Milk and Milk Products</td>
<td>76</td>
<td>13</td>
</tr>
</tbody>
</table>
were not meeting the calorie (boys 2220 ± 176.0, girls 2060 ± 153.9), fat (boys 35 ± 6.4, girls 45 ± 7.8), micronutrient such as calcium (boys 628.7 ± 238.1, girls 740.1 ± 383.4), vitamin A (boys 539.1 ± 103.2, girls 528.9 ± 100.5), vitamin C (boys 47.9 ± 11.2, girls 19.3 ± 2.7). Boys were meeting the recommended RDA of iron but the mean intake value of iron seen to be deficient in girls [Table 4].

Sleep Quality of Samples During Lockdown

Majority (99%) of samples have PSQI Score between 0-5 that shows healthier sleep quality. Majority (55%) of samples have 7-9 hour sleep duration during lockdown [Figure 1]. All children need sleep for their health and well-being. Sleep deficiency in children has long been known to cause functional and cognitive disability. Inadequate sleep has been linked to an increased risk of chronic illnesses, behavioral issues, and impaired memory and executive function.\(^{[19]}\)

DISCUSSION

After getting prior consent from school management Google form method was used to collect information from 100 sample of school going children age between 10-12 years. The Google form included personal profile of the school going children (age, sex, educational status of parents, occupation of parents, and monthly income of the family), socio-economic details, assessment of sleeping quality, and assessment of physical activities, anthropometric measurements and dietary pattern.

Out of 100 samples 51% were boys and 49% were girls. About 58% of samples family monthly income was between Rs. 10000 and 25000. Majority (91%) of samples family
economic condition were affected by COVID 19 lockdown. Majority (82%) of samples has noticed significant change in their body weight; out of 82 samples, majority (98%) noticed an increase in their body weight (36.58 ± 12.31 Kg). The mean BMI before lockdown was 16.707 ± 5.527 and mean value after lockdown it slightly increased to 17.38 ± 5.343. Lockdown downgraded the physical activity of school children. 46% of respondents are not engaged in physical activity before the lockdown. During the lockdown there are 58% respondents are not doing any physical activity. it was seen that samples (both boys and girls) were not meeting the calorie (2220 ± 176.0), girls (2060 ± 153.9), fat (boys (35 ± 6.4), girls (45 ± 7.8), micronutrient such as calcium (628.7 ± 238.1), vitamin A (539.1 ± 103.2), girls (528.9 ± 100.5), vitamin C (boys (47.9 ± 11.2), girls (19.3 ± 2.7). Majority (99%) of samples have PSQI Score between 0-5 that shows healthier sleep quality. Majority (55%) of samples have 7-9 hour sleep duration during lockdown.

REFERENCES
