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Abstract: The unsteady of MHD free convection Coutte flow between two vertical

permeable plates are studied in the presence of thermal radiation. The different

parameters values are shown in graphically.

Introduction:

The study of magneto hydrodynamics (MHD) is of great importance in many

engineering applications such as in the use of MHD pumps in chemical energy

technology and in the use of MHD power generators.

The study of MHD Couette flow is important in industrial and engineering

applications such as MHD pumps, MHD power generators, polymer technology and

electrostatic precipitation extended the work of Hartmann and Lazarus to the case of

unsteady Couette flow. further extended this study by considering the Couette flow in

the presence of uniform suction and injection between porous walls when one of the

walls is uniformly accelerated.

The unsteady MHD Couette flow between two infinite parallel porous plates

with uniform suction and injection in the cases of impulsive and uniformly

accelerated movement of the lower plate was studied by Seth. The lower plate is at

rest in both cases and the magnetic field is fixed with respect to the moving plate. The

velocity distribution and the shear stress on the moving plate were obtained using the

Laplace transform technique. It was observed that in both cases, increasing the



magnetic parameter results in an increase in the velocity, and increasing the suction

parameter decreases the velocity.

This paper aims to extend the work of Rajput and Sahu by incorporating the

effects of uniform suction and injection through the plates. The problem is solved

using Galerkin’s finite element method and the effects of suction parameter S,

radiation parameter Rd, Grash of number Gr, magnetic parameter H and Prandtl

number Pr on both the velocity and temperature distributions are investigated.

MATHEMATICAL ANALYSIS

Figure 1: Schematic Diagram of the Physical System

The incompressible Newtonian fluid flows between two parallel vertical non-

conducting permeable plates. These plates are located on planes y = 0 and y = h, and

are infinite in the x and z directions. The plate at y = h is stationary and the other plate

moves with time-dependent velocity U0tc in the positive x-direction (where U0 is

constant and cis a non-negative integer). The temperature of the moving and

stationary plates are fixed at T1 and T2 respectively, with T1>T2. Uniform suction

through the moving plate and uniform injection through the stationary plate are

applied through the plates at t = 0 in the negative y direction. A magnetic field with

magnitude B0, which is fixed relative to the moving plate, is applied in the positive y-

direction.



We make the following simplifying assumptions.

 The magnetic Reynolds number is very small.

 For a typical conductor, the charge density ρeis very small; hence it is negligible.

 The Boussinesq approximation is applied.

 The fluid is a gray and optically thick absorbing-emitting but non-scattering

medium.

 The fluid has a refractive index of unity.

We have considered the flow of unsteady viscous incompressible fluid. The x – axis is

taken along the plate in the upward direction and y- axis is taken normal to the plate.

Initially the fluid and plate are at the same temperature. A transverse magnetic field

B0, of uniform strength is applied normal to the plate. The viscous dissipation and

induced magnetic field has been neglected due to its small effect. Initially, the fluid

and plate are at the same temperature T∞ and concentration C∞ in the stationary

condition. At time t > 0, the plate is moving with a velocity u = u0 in its own plane

and the temperature of the plate is raised to Tw and the concentration level near the

plate is raised linearly with respect to time. The flow modal is as under:
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With the following initial and boundary conditions :
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The local radiant for the case of an optically thin gray gas is expressed by

 44*4 TTa
y

qr





 , (5)

Considering the temperature difference within the flow sufficiently small, T4 can be

expressed as the linear function of temperature. This is accomplished by expanding T4

in a Taylor series about T∞ and neglecting higher-order, thus

434 34   TTTT (6)

Using equations (5) and (6), equation (2) reduces to
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Introducing the following non-dimensional quantities:
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Equations (1), (2) and (7) leads to
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The initial and boundary conditions in dimensionless form are as follows :
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Dropping bars in the above equations, we have,
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With boundary conditions :
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The dimensionless governing equations (13) to (15), subject to the boundary

conditions (16), are solved by the usual Laplace transform technique. Help of

Hetnarski’s (1975) development has also been taken.

The solutions derived are given below.

Transforming equation (15) we get,
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using boundary conditions (16), we have,
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It’s solution will be :

   cc sSysSy eAeAtyCL  21, , (18)

Where A1 and A2 are arbitrary constants.

Again using above boundary conditions (16), we get,
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Now, since C(y, t) must be bounded as y → ∞, we must have C(y, s) also bounded as

y → ∞ and it follows that we must choose A1 (Spieget (1986) page no.-97).

     100, ALtyCL  , (20)

Using equations (19) and (20), equation (18) reduces to:
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Also transforming equation (14);
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Using boundary conditions (16), it reduces to :
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It’s final solution under (16) will be,

   rr sPRysPRy eAeAtyL   43, ,

Where A3 and A4 are arbitrary constants.

Values of A3 and A4 can be computed using (16);



i.e. A3 = 0 and 24
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s
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From this we can obtain θ(y, t),
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Again transforming equation (13);
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Applying boundary conditions (16), we get,
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It’s general solution will be :

L(u(y, t)) = A.E. + P.I., (27)
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Where A5, A6 are arbitrary constants.

Substituting values of L(C(y, t) and L(θ(y, t)) from equations (21) and (24)

respectively, equation (27) becomes,
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For finding the values of A5 and A6, we apply boundary conditions (16).

We obtain,
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This gives,
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For making the equation (30) concise, the following symbols have been introduced:
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3 SKIN FRICTION

The non-dimensional form of skin friction is given by:
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Therefore, we get,
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4 NUSSELT NUMBER

The non-dimensional form of Nusselt number is given by:
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5 SHERWOOD NUMBER

The Sherwood number is given by:
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Result and Discussion

The numerical results were analysed by computing the finite element solution

for the velocity and temperature. Different values of the suction parameter, radiation

parameter, Grash of number, magnetic parameter and Prandtl number were used in the

cases of impulsive (c = 0) and uniformly accelerated (c = 1) movement of the plate at

y = 0.The following values of the above parameters were considered: suction

parameter S = 1, 3, 5; radiation parameter Rd = 0.1, 1, 10; Grash of number Gr = 1, 5,

10; magnetic parameter H = 2, 4, 6 and Prandtl number Pr = 0.71(for air), 3(for the

saturated liquid Freon at 273.3K), 7(for water). The accuracy of the numerical results

was verified by comparing the previous results of Rajput and Sahu [13] with the

current finite element solution when the parameter S is set to zero. In figures 2 and 3,

the velocity and temperature profiles were compared with the available exact solution



obtained by Rajput and Sahu. It was observed that the present numerical results are in

good agreement with the exact solution.

The effects of the suction parameter S on the time development of the velocity

and temperature of the fluid at the centre of the channel (y=0.5) are shown in figures

4-6. It was observed that both the velocity and the temperature of the fluid decrease

with increasing suction parameter. The suction and injection through the plates

transfer the fluid near the stationary plate (which has lower velocity) to the centre of

the channel (which has higher velocity). This causes the flow velocity at the centre of

the channel to decrease. Since the fluid near the stationary plate has a lower

temperature than the fluid at the centre of the channel, the fluid transfer due to suction

and injection results in a decrease in fluid temperature at the centre of the channel.

Figure 2: Comparison of Velocity Profiles in the Case of Uniformly

Accelerated Movement of the Plate



Figure 3: Comparison of Temperature Profiles

Figure 4: Time Development of Velocity for Different Values of S in the Case of

Impulsive Movement of the Plate



Figure 5: Time Development of Velocity for Different Values of S in the Case of

Uniformly Accelerated Movement of the Plate

Figure 6: Time Development of Temperature for Different Values of S
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