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Abstract: The unsteady of MHD free convection Coutte flow between two vertical

permeable plates are studied in the presence of thermal radiation. The different

parameters values are shown in graphically.

Introduction:
The study of magneto hydrodynamics (MHD) is of great importance in many
engineering applications such as in the use of MHD pumps in chemical energy
technology and in the use of MHD power generators.

The study of MHD Couette flow is important in industrial and engineering
applications such as MHD pumps, MHD power generators, polymer technology and
electrostatic precipitation extended the work of Hartmann and Lazarus to the case of
unsteady Couette flow. further extended this study by considering the Couette flow in
the presence of uniform suction and injection between porous walls when one of the
walls is uniformly accelerated.

The unsteady MHD Couette flow between two infinite parallel porous plates
with uniform suction and injection in the cases of impulsive and uniformly
accelerated movement of the lower plate was studied by Seth. The lower plate is at
rest in both cases and the magnetic field is fixed with respect to the moving plate. The
velocity distribution and the shear stress on the moving plate were obtained using the

Laplace transform technique. It was observed that in both cases, increasing the
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magnetic parameter results in an increase in the velocity, and increasing the suction
parameter decreases the velocity.

This paper aims to extend the work of Rajput and Sahu by incorporating the
effects of uniform suction and injection through the plates. The problem is solved
using Galerkin’s finite element method and the effects of suction parameter S,
radiation parameter Rd, Grash of number Gr, magnetic parameter H and Prandtl
number Pr on both the velocity and temperature distributions are investigated.

MATHEMATICAL ANALYSIS
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Figure 1: Schematic Diagram of the Physical System
The incompressible Newtonian fluid flows between two parallel vertical non-
conducting permeable plates. These plates are located on planes y = 0 and y = h, and
are infinite in the x and z directions. The plate at y = h is stationary and the other plate
moves with time-dependent velocity Uot® in the positive x-direction (where Uy is
constant and cis a non-negative integer). The temperature of the moving and
stationary plates are fixed at T and T» respectively, with T;>T,. Uniform suction
through the moving plate and uniform injection through the stationary plate are
applied through the plates at t = 0 in the negative y direction. A magnetic field with
magnitude BO, which is fixed relative to the moving plate, is applied in the positive y-

direction.
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We make the following simplifying assumptions.

e The magnetic Reynolds number is very small.

e For a typical conductor, the charge density pcis very small; hence it is negligible.

e The Boussinesq approximation is applied.

e The fluid is a gray and optically thick absorbing-emitting but non-scattering
medium.

e The fluid has a refractive index of unity.

We have considered the flow of unsteady viscous incompressible fluid. The x — axis is
taken along the plate in the upward direction and y- axis is taken normal to the plate.
Initially the fluid and plate are at the same temperature. A transverse magnetic field
Bo, of uniform strength is applied normal to the plate. The viscous dissipation and
induced magnetic field has been neglected due to its small effect. Initially, the fluid
and plate are at the same temperature T, and concentration C, in the stationary
condition. At time t > 0, the plate is moving with a velocity u = uo in its own plane
and the temperature of the plate is raised to Tw and the concentration level near the

plate is raised linearly with respect to time. The flow modal is as under:

2 2
a—u=gﬂ(T—Tm)+gﬂ(C—Coo)+v8—b;—GBOu, (1)
ot oy P

oT o'T _%

—=k , 2
PCy ot o> Oy @
2
f?gz :Zl)fz—gz, (3)
ot oy

With the following initial and boundary conditions :
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u=0
t<0:T=T,, ;forallthevaluesof y
c=C,,
u=u,,
t>0:T=Tw+(TW:Tw)At, }aty:O 4)
c=C, +(C,=C,)at,
u—0,
T—>T, 6 tasy —>0
cC->C,
u2
Where AZTO

The local radiant for the case of an optically thin gray gas is expressed by

%V:—M*J(T; -T), Q)

Considering the temperature difference within the flow sufficiently small, T* can be
expressed as the linear function of temperature. This is accomplished by expanding T*
in a Taylor series about T., and neglecting higher-order, thus

T* =4T’T - 3T} (6)

Using equations (5) and (6), equation (2) reduces to

o°T . 3
pC, P» +16a*oT>(T, - T) (7)

Introducing the following non-dimensional quantities:

L—IZL )—}:yuo 9: (T_Too)
uO’ v ’ (TW_TCO)’
— C — —
Gr:gﬁ*V(Y;W Tco)’ Pr:lLl P, C: (C Coo),
u() k (CW_CDO) (8)
* _ 2
Gm — gﬂ V(C;w COO), SC :1, M: O-BOZV’
Uy D Pl
* 4,2 3 2
:16ak+aTm’ t_:mTOand U= pv.
0
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Equations (1), (2) and (7) leads to

G— 2—

%zG,9+Gm5+Z_L; - M, )
i

2

%:Lae_ﬂg’ (10)

of P P

oCc 10°C

2 (an

u=0
t<0:0=0, ; forall thevalues of 'y
C =0,
u=1,
t>0:0=t, raty=0 (12)
C =i,
u—0,
0—>0 tasy > oo
C—>0

Dropping bars in the above equations, we have,

2
%:G,9+GmC+gy—L;—Mu (13)
2
00_100 R, (14)
ot P .oy* P
oc 1 8°C
BT o (15)

With boundary conditions :
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u(y,1)=0
t<0: G(y,t) =0, for all thevalues of y
Cly.t)=0

(16)

The dimensionless governing equations (13) to (15), subject to the boundary

conditions (16), are solved by the usual Laplace transform technique. Help of

Hetnarski’s (1975) development has also been taken.
The solutions derived are given below.

Transforming equation (15) we get,

L(Mj _ L(Lazc_(%f))

ot s, ot )

ie. sL(C(y,1))- C(1,0)= SL L(azgy(f,t)j

c

using boundary conditions (16), we have,

sL(C(y, t))— SLW ,

c

or

CUCKL) s 1c(p)=0
oy

It’s solution will be :
L(C(y,t)) =A4e’ e 4 Aze_y‘/E ,
Where A1 and A; are arbitrary constants.

Again using above boundary conditions (16), we get,

IIFANS

(17)

(18)
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LC(r0))= L) =— = 4, + 4, (19)

s
Now, since C(y, t) must be bounded as y — oo, we must have C(y, s) also bounded as
y — oo and it follows that we must choose A (Spieget (1986) page no.-97).
~L(C(y,t))=L(0)=0= 4, (20)

Using equations (19) and (20), equation (18) reduces to:

L(<:(y,t))=size-y¢E 1)

It implies C(y,t)=L" (Lze_y e J , from Campbell G A and Foster R M (1948), we

N
get,
N
C(y,t)z{(l+2772Sc)e;fc(77\/S_c )- ’i/\/;_ = sc} 22)
Where 17 = %\/;

Also transforming equation (14);

L(Mj - L(LM_ g o, t)}

ot P oy’

r r

e, st(oly.r)-00.9)= LSO Ry, ) )

1
Py’

r

Using boundary conditions (16), it reduces to :

d*L(0(y.1))

o) sp oty =0

It’s final solution under (16) will be,
L(e(y’t)) = A3€y Resk, + A4e—y\/R+7sP, ,

Where Az and A4 are arbitrary constants.

Values of A3 and A4 can be computed using (16);
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i.e. A3=0and 4, :Lz.

s
Therefore,
1 - s+c
L(e(ya t)) = S_Ze )’\/Fw/i 5 (24)
Where ¢ = LS .
P

r

From this we can obtain 6(y, t),

2
N

1.e. G(y, t) = L‘l(ie—y\/f«/Ej ’

G(y,t) = %[ﬁlez”merfc(n\/ﬁ + \/E)+ Gze’z”merfc(n\/g - \/E)], (25)

nP nP
Where 6, =|1+——=|and 6, =| 1 ———- |.
1 ( x/Rtj ’ ( x/Rtj

Again transforming equation (13);

2

L[%) - L(G,H(y,t)+ G.C(y,0)+ 621;()/ 1) — Mu( ,t)} :
We get

stlulr.)-(r.0)= 6,1(000)+ G, 1)+ T ey 2o

2

'y

Applying boundary conditions (16), we get,

w_(s+M)L(u(y,t)):-G,L(a(y,f))—GmL(C(y,r))

It’s general solution will be :
L(u(y, t)) = A.E. + P.L, (27)
With

AE. =A™ + Ae "M
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1

P.I -=—Gr(m)L(9(y,t))—Gm YA (202

Where As, Ag are arbitrary constants.

Substituting values of L(C(y, t) and L(0(y, t)) from equations (21) and (24)
respectively, equation (27) becomes,

: , G e B G e
L = Ay g M r
(u(r.1))=Ase e +(1_13) s*(s—a) ’ (1-5.)s’(s—b)

and b= M
1-P S -1

c

Where a = (28)

For finding the values of As and Ag, we apply boundary conditions (16).
We obtain,

1 G 1 G 1
As=0and 4 =—— r — m
S A T T 1= P) s (s—a) (1=5.)5*(s—b)

Therefore equation (24) becomes :

B s —ysiM S _ -yseM
[e e } N 1 G (e e J (29)

Llu(pr)= e 4 O

1-P s’(s—a) -S s*(s—b)
This gives,
“yP +ste  _ylseM “vsSe __—yVs+M
u(y,t)= " 1w G |e e y L G |e e v ’
s 1-P s*(s—a) 1-S. s*(s—b)

u(y,t) = Ble_ymerfc(n — \/ﬁt)+ Bzeymerfc(n + \/ﬁt)
+ Gs[eymerfc(ry\/?, ~Jla+ c)t)+ eymerfc(ry\/?, +.J(a+ ch )}
- lB3efy‘/Eerfc(77\/Fr - \/E)+ B4ey‘/zerfc(77\/ﬁr + \/E)J

+ Gl el B [t )+ P erfelp B+ b4
+G, le_yﬁeifc(n\/b’_c - \/E)+ eyﬁeifc(n\/S_c + \/E)J

3512

IIJEFANS



SS5M PRINT 23191775 Online 2320 7876
© 2012 1JFANS. All Rights Reserved

-G, I_e_ymerfc(n - M)+ eymeﬂc(n + M)J
_ G4{1 +b(1+ 208, Jerfel 5. )+ 21S, s, } , (30)
N

For making the equation (30) concise, the following symbols have been introduced:

B, =%{Gl +G2(t— 2\%)} B, =%{Gl +G{t+ﬁﬂ,

B, = 2{1+ at — y\/_} B, = 2[H z+y\/_}

G G
G =1+G, +G,, G, = (l—rP)er(l—mS)
G .G,
“Ta-ny SRSy
Gsie‘”, G,— G, e
2 2
M, =M +a and M,=M+b

3 SKIN FRICTION

The non-dimensional form of skin friction is given by:

Therefore, we get,

1G, i e or +a tF, o
r—(tJ_ \/—jGerf(\/_) e G3|:M1 (0t - }

- Gﬂ/E{(Cszc—j;zad)erf(\/E)— e J(a + c)erf(\/(a +elt )}

- 4ebt{\/vze’f(\/M_zt)_bS (o) ﬂ} (32)
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4 NUSSELT NUMBER

The non-dimensional form of Nusselt number is given by:

N = _(89(%0] _ _L(_ag(y” )] , (33)
Y ) NASKL, =0

Hence,

Rt

_ Vip R\ b 5
Nu —(l\/ﬁ+mjerf( ?]+ﬁe . (34)

5 SHERWOOD NUMBER

The Sherwood number is given by:

{0 ),

» )., 2t on

=0

Thus,

S, =< (s -1). (36)

T

Result and Discussion

The numerical results were analysed by computing the finite element solution
for the velocity and temperature. Different values of the suction parameter, radiation
parameter, Grash of number, magnetic parameter and Prandtl number were used in the
cases of impulsive (¢ = 0) and uniformly accelerated (c = 1) movement of the plate at
y = 0.The following values of the above parameters were considered: suction
parameter S = 1, 3, 5; radiation parameter Rd = 0.1, 1, 10; Grash of number Gr=1, 5,
10; magnetic parameter H = 2, 4, 6 and Prandtl number Pr = 0.71(for air), 3(for the
saturated liquid Freon at 273.3K), 7(for water). The accuracy of the numerical results
was verified by comparing the previous results of Rajput and Sahu [13] with the
current finite element solution when the parameter S is set to zero. In figures 2 and 3,

the velocity and temperature profiles were compared with the available exact solution
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obtained by Rajput and Sahu. It was observed that the present numerical results are in
good agreement with the exact solution.

The effects of the suction parameter S on the time development of the velocity
and temperature of the fluid at the centre of the channel (y=0.5) are shown in figures
4-6. It was observed that both the velocity and the temperature of the fluid decrease
with increasing suction parameter. The suction and injection through the plates
transfer the fluid near the stationary plate (which has lower velocity) to the centre of
the channel (which has higher velocity). This causes the flow velocity at the centre of
the channel to decrease. Since the fluid near the stationary plate has a lower
temperature than the fluid at the centre of the channel, the fluid transfer due to suction

and injection results in a decrease in fluid temperature at the centre of the channel.

1 | —
—Exact Solution

——Finite Element Solution

s Sy, .

Tnotel- Rd=1, G5 =2, ]

Pr=3, 1=0.02
umt -‘;\""i-‘ : q

ooz | N\ |

e "‘\;\: : i

Figure 2: Comparison of Velocity Profiles in the Case of Uniformly

Accelerated Movement of the Plate
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Figure 4: Time Development of Velocity for Different Values of S in the Case of

Impulsive Movement of the Plate
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Rd=1, Gr=1,
H=2, Pr=0.71

Figure 5: Time Development of Velocity for Different Values of S in the Case of

_z,-.-—
t' =1

Uniformly Accelerated Movement of the Plate
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