SUPER STOLARSKY 3 MEAN LABELING OF LINE GRAPHS

M SREE VIDYA, Research Scholar, Sree Ayyappa College for Women, Chunkankadai. witvidya@ gmail.com
SANDHYA S S, Assistant Professor, Department of Mathematics, Sree Ayyappa College for Women witvidya@gmail.com Chunkankadai Affiliated to ManonmaniamSundararanar University, Abishekapatti - Tirunelveli -627012

Abstract

Let G be a graph with p vertices and q edges. Let $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ be an injective function. For a vertex labeling f , the induced edge labeling $f(e=u v)$ is defined by $f(e)=$ $\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor$, then the resulting edge labels are distinct. In this case f is called Super Stolarsky-3 Mean labeling of G. In this paper we investigate Super Stolarsky-3 Mean labeling of line graph.

Key words- Graph, Stolarsky-3 mean graph, Line Graph, Diamond graph, Fork graph, Bull graph, Fish graph, Cricket graph, Butterfly graph.

I INTRODUCTION

The graph considered here will be finite, undirected and simple. The vertex set is denoted by $\mathrm{V}(\mathrm{G})$ and the edge set is denoted by $\mathrm{E}(\mathrm{G})$. For all detailed survey of graph labeling, we refer to Galian [1]. For all other standard terminology and notations we follow Harary[2].S.S.Sandhya, S.Somasundaram and S.Kavitha introduced the concept of Stolarsky-3 Mean labeling of graphs in [3]. In this paper, we investigate the Line graphs of Super Stolarsky-3 Mean graphs, we will provide a brief summary of definitions and other information which are necessary for our present investigation.

Definition : 1.1

A graph G with p vertices and q edges is called a Stolarsky-3 Mean graph,if each vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots \ldots, q+1$ and eachedge $e=u v$ is assigned the distinct labels
$f(e=u v)=\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ then the resulting edge labels are distinct. In this case f is called Stolarsky 3 Mean labeling of G.

Definition: $\mathbf{1 . 2}$

Let $G=(V, E)$ be a non-trivial graph. Now each edge in E can be considered as a set of two elements of
V. So E is a non-empty collection of distinct non-empty subsets of v , such that their union is V . So there is a intersection graph $\Omega(\mathrm{E})$. The graph $\Omega(\mathrm{E})$ is called the Line graph of G and is denoted by $\mathrm{L}(\mathrm{G})$.We observe that the vertices of $L(G)$ are the edges of G. Further two vertices of $L(G)$ are adjacent iff their corresponding edges are adjacent in G. Thus the vertices a, b in $L(G)$ are adjacent iff $a=u v a n d b=$ vw are in G
Definition: 1.3:The Diamond graph is a planar undirected graph with 4 vertices and 5 edges.
Definition: 1.4:The Fork graph is a tree 5 vertices and 4 edges. It is also called the chair graph.
Definition: 1.5:The Cross graph is the 6 vertex tree and it has 5 edges.
Definition: 1.6 :The Bull graph is a planar undirected graph with 5 vertices and 5 edges in the form of the triangle with two disjoint pendent edges.
Remarks: 1.10
Let u gets label ' 1 ' then any edge incident with u must get label 1 (or) 2 (or) 3 . Hence this vertex must have a degree ≤ 3.

II Main Results

Theorem 2.1. Line graph of Diamond graph $L\left(G_{d}\right)$ is a Super Stolarsky-3 mean graph.
Proof. The graph $L\left(G_{d}\right)$ is shown below.
Let $G=L\left(G_{d}\right)$. Let the vertex set of G be $\left\{u_{i} ; 1 \leq i \leq 5\right\}$ and the edges set of G be $\left\{u_{i} u_{i+1} ; 1 \leq i \leq 4\right\} \cup$ $\left\{u_{1} u_{i} ; 3 \leq i \leq 5\right\} \cup\left\{u_{2} u_{5}\right\}$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ by

$$
\begin{aligned}
& f\left(u_{1} u_{i+2}\right)=4 i+1 ; i \leq i \leq 2 \\
& f\left(u_{1} u_{5}\right)=10 \\
& \qquad f\left(u_{2} u_{5}\right)=7
\end{aligned}
$$

Thus f admits Super Stolarsky-3 mean labeling of G.
Hence $L\left(G_{d}\right)$ is a Super Stolarsky-3 mean graph.
Example 2.2. Super Stolarsky-3 mean labeling of $L\left(G_{d}\right)$ is shown below.

Theorem 2.3. Line graph of Fork graph $L\left(G_{f}\right)$ is a Super Stolarsky-3 mean graph.
Proof. The graph $L\left(G_{f}\right)$ is shown below.
Let $G=L\left(G_{f}\right)$. Let the vertex set of G be $\left\{u_{i} ; 1 \leq i \leq 4\right\}$ and the edges set of G be $\left\{u_{i} u_{i+1} ; 1 \leq i \leq 3\right\} \cup$ $\left\{u_{1} u_{3}\right\}$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=2 i-1 ; 1 \leq i \leq 2 \\
& f\left(u_{i}\right)=2 i ; 1 \leq i \leq 4
\end{aligned}
$$

In the above figure, the vertices and edges together get labels from $\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$.
Hence $L\left(G_{f}\right)$ is a Super Stolarsky-3 mean graph.
Example 2.4. Super Stolarsky-3 mean labeling of $L\left(G_{f}\right)$ is shown below.
Theorem 2.5. Line graph of Cross graph $L\left(G_{c}\right)$ is a Super Stolarsky-3 mean graph.
Proof. The graph $L\left(G_{c}\right)$ is shown below.

Let $G=L\left(G_{c}\right)$. Let the vertex set of G be $\left\{u_{i}, 1 \leq i \leq 5\right\}$ and the edges set of G be $\left\{u_{i} u_{i+1}, 1 \leq i \leq 4\right\} \cup$ $\left\{u_{2} u_{4}, u_{3} u_{5}\right\}$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ by
By the above labeling pattern, the vertices and edges together get labels from $\{1,2, \ldots, p+q\}$.
Hence $L\left(G_{c}\right)$ is a Super Stolarsky-3 mean graph.
Theorem 2.7. Line graph of Bull graph $L\left(G_{b}\right)$ is a Super Stolarsky-3 mean graph.-
Proof.
Let $G=L\left(G_{b}\right)$. Let the vertex set of G be $\left\{u_{i}, 1 \leq i \leq 5\right\}$ and the edges set of G be $\left\{u_{i} u_{i+1}, 1 \leq i \leq 4\right\} \cup$ $\left\{u_{1} u_{i}, 3 \leq i \leq 5\right\}$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ by
Then the edges are labeled with
$f\left(u_{i} u_{i+1}\right)=3 i-1 ; 1 \leq i \leq 2$

$$
f\left(u_{1} u_{i+2}\right)=2 i ; 2 \leq i \leq 4
$$

$$
f\left(u_{i} u_{i+1}\right)=3 i ; 3 \leq i \leq 4
$$

Theorem 2.8. Line graph of Fish graph $L\left(G_{f h}\right)$ is a Super Stolarsky- 3 mean graph.
Proof. The graph $L\left(G_{f h}\right)$ is shown below.
Let $G=L\left(G_{f h}\right)$. Let the vertex set of G be $\left\{u_{i}, 1 \leq i \leq 7\right\}$ and the edges set of G be $\left\{u_{i} u_{i+1} ; 1 \leq i \leq 6\right\} \cup$ $\left\{u_{3} u_{6}, u_{3} u_{7}, u_{4} u_{6}, u_{4} u_{7}, u_{1} u_{7}\right\}$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots, p+q\}$ by $f\left(u_{i}\right)=2 i-1 ; 1 \leq i \leq 3 f\left(u_{i}\right)=4 i-8 ; 4 \leq i \leq$
Then the edges are labeled with
$f\left(u_{1} u_{i+1}\right)=2 i ; 1 \leq i \leq 2$
By the above labeling pattern, the vertices and edges together get labels from $\{1,2, \ldots, \mathrm{p}+\mathrm{q}\}$.
Hence $L\left(G_{f h}\right)$ is a Super Stolarsky-3 mean graph.
Remark: Graph G and line graph of G are isomorphic to each other.

III CONCLUSION

The study of Super Stolarsky-3 mean labeling of line graphs is important due to its diversified applications. Line graphs of all Stolarsky-3 mean graphs are not Stolarsky 3 mean graphs. It is very interesting to investigate graphs which admit Stolarsky 3 mean labeling. In this paper, we proved that Line graph of Diamond graph, Fork graph, Bull graph, Fish graph, Cricket graph, Butterfly graph are Super Stolarsky-3 mean graphs. The derived results are demonstrated by means of sufficient illustration which provide better understanding. It is possible to investigate similar results for several other graphs.

REFERENCES

[1] Galian,J.A.(2019), A Dynamic Survey of Graph Labeling, The Electronic Journal of combinatories.
[2] Harary,F.(1988), Graph Theory, Narosa Publishing House Reading,New Delhi.
[3] S.S.Sandhya, S.Somasundaram, S.Kavitha, Stolarsky," 3 Mean Labeling of Graphs", Global Journal of pure and Applied Mathematics, Vol.14,2018,no.14, pp.39-47.
[4] M.Venkatachalapathy, K.Kokila and B.Abarna.(2016),"Some Trends In Line Graphs", Advances in Theoretical and Applied Mathematics,Volume 11,no.2,171-178.

