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Abstract 

This article describes nonparametric procedure for comparing cost efficiencies among several 

repeated measurement designs under fixed total cost. Different models are assumed and related 

asymptotic results are provided. Method of allocating treatments is also obtained for two 

treatments with different costs per unit. 

Introduction 

Clinical study is an important area of research in modern days and the most important criteria is that 

it should be well supported by medical ethics. Sometimes the rule for allocating treatments under 

study may have greater role in controlling medical ethics specially when the study is based on 

repeated measurement design. It is well known that crossover design is better than parallel group 

design in this aspect. Again with the advancement of new scientific tools the scope of clinical 

research increases significantly. Thus, in clinical research, when two or more treatments are 

compared in a multi period design, the cost of conducting medical experiments also increase 

significantly. Therefore, it is required to develop statistical tools which provide a methodological 

suggestion in performing a certain clinical trial such that cost efficiency is achieved keeping in mind 
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the medical ethics of the trial. In this context, repeated measurement designs are considered to 

compare the cost efficiencies among them. 

The organization of the rest of the chapter is as follows. Section 5.2 introduces different 

designs and the nonparametric models. Section 5.3 provides suitable cost function. Section 5.4 

describes appropriate procedure for efficiency comparison. Simulation results are provided in 

Section 5.5. Allocation rule depending on costs of the two competitive treatments is provided in 

Section 5.6 for different crossover designs. The chapter ends with concluding remarks in Section 

5.7, followed by some technical details in the appendices. 

Designs and Models 

 

In crossover trial, when two treatments A and B are compared, it may be better to re- strict 

ourselves up to three-period designs. This is because of the fact that in repeated measurement 

design dropouts of patients increase with the number of periods (Ebbutt, 1984). So two-period 

and three-period designs are considered such that the first two periods of the design constitute 

one of the basic crossover designs, viz., {AB, BA} (usual crossover design) or {AA, AB, BA, 

BB} (Balaam’s design). See, for example, Balaam (1968), Chow and Lin (2000). 

For two-period crossover design the possible choices are 

 
• D2.1 ={AB, BA} 

 
• D2.2 ={AA, AB, BA, BB}, 

 
whereas D2.3 ={AA, BB} represents two-period parallel group design . In the literature of 

crossover design on three periods, the following designs 

5.2. Designs and Models 

• D3.1 ={ABB, BAA} 

 
 

• D3.2  ={ABA, ABB, BAA, BAB} 

 
 

• D3.3  ={AAB, ABA, BAB, BBA} 

 
 

• D3.4  ={AAB, ABB, BAA, BBA} 
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are found as crossover designs and the design represented by D3.5  ={AAA, BBB} is parallel 

group design. 

 
Let Yjm be the response of a patient corresponding to the j-th treatment sequence inperiod 

m. Define Y
T
 = (Yj1, Yj2) for two-period design (or Y

T
 = (Yj1, Yj2, Yj3) for three-period 

design) and, as in the previous chapters, assume that 

 
 

Yj ∼ G (x − θj1, y − θj2) (5.2.1) 

 

 
or 

 

Yj  ∼ G (x − θj1, y − θj2, z − θj3) (5.2.2) 

 
 

according as the corresponding design is a two-period design or a three-period design, where 

G, the continuous bivariate (or trivariate) distribution function (d.f.), and θjm ∈ (treatment 

sequences), m = 1, 2, 3 are all unknown. Further, for 
∞ ∞ 

(− , ) , j ∈ S 

 

some unknown univariate continuous d.f. F, the marginal d.f. of Yjm is assumed to be 

Fm(x) = F (x − θjm) , j ∈S, m = 1, 2 (or m = 1, 2, 3). 

In modeling θjm, apart from general effect µ and period effect πm for the m-th period, some 

relevant treatment effects as direct treatment effect, self and mixed carryover effects are considered 

(see, for example, Candel, 2012; Kawaguchi et al., 2010; Liang and Carriere, 2010). As in Chapter 

4, the corresponding comparisons between treatments B and A are denoted respectively by τ, λ 

and λ
′
. For illustration, under the additive assumption, θjm 

in D2.2 can be represented as follows: 

 
 

Treatment Sequence (j) Period (m) 
 

m = 1 m = 2 
 

AA (1) µ + π1 µ + π2 

 

AB (2) µ + π1 µ + π2 + τ 
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BA (3) µ + π1 + τ    µ + π2 + λ 
 

BB (4) µ + π1 + τ µ + π2 + τ + λ
′
 

 

Notice that such model is not applicable in designs D2.1, D2.3 and D3.5. Thus two model 

restrictions are considered as λ
′
 = λ and λ

′
 = λ = 0. Denote the three models respectively by 

Model 1, Model 2 and Model 3. The structure of θjm in other designs underdifferent models can 

similarly be defined. 

Cost Function 

 

Among the available works on cost efficiency in crossover design, Brown (1980) con- cent 

rates in D2.1 under a simple cost structure consisting of equal cost for each period and for each 

treatment. Along this direction, Carriere and Huang (2000) provide com- parison of several 

crossover designs with respect to completely randomized design. Yuanand Zhou (2005) work on 

more general cost structure and compare several designs for fixed total cost. Candel (2012) 

suggests further generalization of the cost function and compares two-period designs. In this 

connection it would be important to mention that all such comparisons are done through 

variances of the direct treatment effects for which the assumption on the existence of second 

moment of the response variable is needed. 

In this chapter, as in Yuan and Zhou (2005), the following cost function 
 

 

r ∑ 

C = Nc0 + N cm (5.3.1) 

m=1 

 

is considered, where N denotes the total number of subjects involve in the trial; c0 denotes the initial 

cost to recruit a subject in the trial; cm denotes the cost of treating a subject inperiod m (= 1, · · · , 

r). It is assumed that cm = a + bm, m = 1, · · · , r. Yuan and Zhou (2005) have also suggested to 

consider polynomial or exponential cost function wheneverrequired. 

 

 
Comparison 

The work compares cost efficiency of different designs under the chosen models fora given 

total cost. Here such comparisons are made by power study of suitably defined hypotheses 
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0 

testing procedures. On this matter, assumption (5.2.1) or (5.2.2) is used to provide 

nonparametric tests for the global testing problem (see, for example, Tudor and Koch, 1994 

among others) under different models mentioned below. 

 
Model 1 : H

1
 : τ = 0, λ = 0, λ

′
 = 0Model 2 :  H

2
 : τ = 0, λ = 0 

Model 3 : H
3
 : τ = 0 

0 
 

against composite alternatives H
l
 : not H

l
 , l =01, 2, 3. 

1 0 

Now, based on different designs, between subject comparisons are used to develop 

( 
l l 

) 0 1 

asymptotically distribution free (ADF) tests for H , H , l = 1, 2, 3 following the works 
 

given in Chapters 2 and 3. The procedures are illustrated in D2.2 and are incorporated intoother 

designs. Here, instead of equal allocation (EA) scheme, equal probability allocation (EPA) 

scheme (as described by Bandyopadhyay et al., 2011 and provided in the earlier chapters) is 

adopted. In this scheme subjects (patients) under trial are distributed between two treatments 

completely at random. That means, if period 1 and period 2 assignment indicators are δ1 and δ2 

with δs = 1 or 0 according as a patient receives treatment A or 

B, P (δs = 1) = 
1
 , s = 1, 2 and the response of a patient in period m is represented by 

2 

 

Z2,m = δ1δ2Y1m + δ1 (1 − δ2) Y2m + (1 − δ1) δ2Y3m + (1 − δ1) (1 − δ2) Y4m, 

 
where Yjm denotes the potential response to the treatment sequence j in period m, j = 

1, 2, 3, 4 and m = 1, 2. 

The present analyses are based on the data (δis, Z2,im), i = 1, 2 . . . N, s = 1, 2, m = 1, 2, 

obtained from N patients. Let nA and nB be the number of subjects to treatment A and 

treatment B respectively in period 1 and nj be the number of subjects to the j-th treatment 

sequence in period 2, j = 1, 2, 3, 4. Then it is possible to write 

N N N 
 

 

i=1 i=1 i=1 

nA = 
∑ 

δi1 = N − nB,  n1 = 
∑ 

δi1δi2 = nA − n2 and n3 = 
∑ 

(1 − δi1) δi2 = nB − 
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Numerical Computation 

the unknown quantities {cmm′ ,  m ≠  m′} are consistently estimated by {cmm′ ,  m ≠m}′ 

In a comparative study on cost efficiency among the designs, evaluation of competing type I 

error rate and power of various testing procedures is based on simulation. On this matter, for 

illustration, normal distribution (bivatiate or trivariate depending on the study periods) is assumed 

with an equicorrelated structure of the related variance matrix of theresponse variable and all the 

procedures are compared at the nominal level α = 0.05. Here in which, for illustration, ^ 
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Figure 5.1: Simulated type I error rates for ρ = 0.5, C = 50000, c0 = 500, a = 200 with varying b 
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In this simulation study ten thousands iterations are made to generate data in the soft- ware R 

(version 3.1.2) with the help of the package ‘mvtnorm’. The total cost C and the cost parameters c0, 

a and b are so chosen that the resulting sample size Nexceeds 20. Simulated type 

I error rates when the com- mon 

correlation coefficient (ρ) is 0.5, are 

displayed in Figure 5.1 under the 

three models for increasing per unit 

cost. It is observed that 

all the tests attain the nom- 
 

inal level satisfactorily, al- though there is a tendencyof overestimating the nomi-0.0 0.2 

0.6 0.8 1.0 

0.4 

b/a 
 

Figure 5.2: Comparison of the powers under Model 1 for the alter- native (τ, λ, λ
′
) = (1.0, 0.0, 0.0) 

for C = 50000, c0 = 500, a = 200 

with varying b 

nal level for some of them particularly when the per unit cost is large (i.e. when N is small). 

Again, when N is small, inflated type I error rates are observed at ρ ≥ 0.8 (D3.2 and D3.4 under 

Model 1) and at ρ ≤ 0 (D3.1, under Model 2 and Model 3, D3.3 under Model 2 and D3.4 under Model 1 

and Model 2). However, for moderately large sample size (N ≥ 26) all the tests attain the nominal 

level satisfactorily at every choices of ρ (except tests for D3.4 under Model 1 which require 

slightly larger sample size, N ≥ 30). In this connection it is important to mention that, for 

comparing the cost efficiency of the designs under 

EPA when sample size is small, it is suggested to use the estimated variance-covarianc 
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matrix of the MW-related statistics without making the assumption 
nj 

N 

( ) 
or , j ∈S 

because this assumption makes the corresponding tests little conservative. 
 

Note that efficiency of a design depends on the model assumption and it may vary withrespect 

to different treatment effects present in a model. Thus, to measure the effectivene of treatment 

parameters present in a model, the alternatives are taken in the following 

way:  (τ, λ, λ
′
)   = (1.0,  0.0, 

 

 

 

 

 

 

 

 

 
0.0 0.2 0.4 b/a 

0.6   0.8    1.0 
 

0.0), (0.0, 1.0, 0.0) and (0.0, 0.0, 

 

1.0) for Model 1; (τ, λ) = (1.0,0.0) and (0.0, 1.0) for Model 2; τ = 1.0 for Model 3. Now, in each 

model, power compari-son among the testing proce-dures from different designs 

Figure 5.3: Comparison of the powers under Model 1 for the alter- native (τ, λ, λ
′
) = (0.0, 1.0, 0.0) 

for C = 50000, c0 = 500, a = 200 

with varying b 

is made graphically for ρ = 

 

0.5   and C =50000. Depend-ing on the cost function, two 

cost structures are chosen as (i) c0 =500, a =200 and vary b as 0, 25, 50,…, 200; (ii) a =250, 

b =0 and vary c0 as 0, 100, 200,…, 1000. 
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It is observed that the con-figurations (i) and (ii) pro-vide exactly same conclusionregarding the cost 

efficiency. Hence, for illustration, the power plots corresponding to the first cost configuration are 

displayed. However, at the alternative (0.0,0.0,1.0), D3.1 and D3.4 have almost same cost efficiency 

and higher than the other designs (see Figure 5.4). Thus, to achieve cost efficiency under Model 1, 

one may have an open choice between D3.1 and D3.3 which perform relatively better than the other 

designs. It is also noticeable that Balaam’s design (D2.2) has the worst overall performance under 

Model 1. 
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(b) Under the alternative (τ, λ) = (0.0, 1.0) 

 
Figure 5.5: Power Comparison under Model 2 for C = 50000, c0 = 500, a = 200 with varying b 
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1
.0

 
1

.2
  

1.0). However, corresponding to D2.1 and D2.2, the two lines coincide to each other at the 

alternative point (0.0, 1.0) (see Figure 5.5b). But D2.2 shows the worst per- formance at the 

alternative (1.0, 0.0). Thus to achieve higher cost efficiency in Model 2,D2.1 is preferred. Under 

Model 3, D2.1 shows superiority among the designs considered (see Figure 5.6). The 

performances of three-period designs are also satisfactory. However, parallel group designs have 

the worst performance under this model. In fact, it is observed that the performance of parallel 

group design decreases with the number of periods. 

In this connection it is important to mention that, with conclusions remaining the same, the 

power of the tests increase with ρ (except for parallel group designs). Moreover, as mentioned 

ear-lier, the efficiency of a de-sign depends on the model assumption and it is difficult to make 

an overall conclu 

sion regarding the cost efficiency. However, it can be said that three-period crossover design 

performs better under the model containing→co∞mplex carryover effects →(Model 1). On the →oth∞er 

hand, under simple model (i.e. Model 2 or Model 3), the usual crossover design (D2.1) is better. 

 

 
For other designs, similar technique may be adopted to get the optimum proportion for 

allocating treatments. However, for D2.1 under a given total cost C, it is possible to write C = 

Nc0 + N (cA + cB). Thus C is independent of any choice of p. Hence it is not possible to obtain 

an efficient allocation depending on the cost parameters and thus EPAdesign is the best possible 

option for allocating treatments. 

 
However, for the three period crossover designs, it is possible to achieve cost efficient 

allocation in an analogous way as described for D2.2. It is important to notice that, the treatment 

assignment indicators relate to the periods of randomization in which the costcan be controlled 

through allocation, whereas the costs of the other periods depend fullyon the previous period of 

randomization. Thus it is logical to take the periods where randomizations are made to provide 

test for (H
c
, H

c
). Applying the same technique to 

0 1 
 

the three period designs the following solutions are obtained. 
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3 3.4 3.3 

 

 
Notice that the range of popt for the designs D3.i, i = 1, 2, 3, 4 is 

√ (  
 

2 − 1, 2 − 
√ ) 

 

2 . This is 

because of the fact that for each of these designs there is a period where randomizationis not made 

and hence even when cA and cB are wide apart, consideration of the extremevalues of popt (i.e. 

close to zero or one) certainly do not lead to the efficient choice. The concept can also be 

extended in several directions. 

Conclusion 

In this chapter efficiency comparison among the designs with respect to cost is done un-der EPA 

when there is no difference between the cost in application of two competitive treatments. It is 

also shown that, when the costs in application of the two treatments aredifferent, EPA is not an 

efficient choice. However, as mentioned in Section 5.1, the most important criteria in clinical 

study is medical ethics. This is particularly important when a newly introduced drug is tested 

and we have no clear idea regarding the performance of it. Bandyopadhyay and Das (2017) 

provide a two stage allocation procedure to support medical ethics in this context but such 

allocation may not be cost efficient. However a more general allocation scheme would be that 

one which will provide a balance betweenthese two issues. Such things go beyond the scope of 

the present consideration and are kept for future research. Balaam’s design (D2.2) is supposed to 

provide more information with respect to carryover effects than D2.1. From another viewpoint to 

achieve more precision from crossover study,it is advocated to apply crossover trial for more 

than two periods. Thus extension of thesimple crossover design (D2.1) to three-period design 

will enable us to focus more lighton some complex carryover effects, e.g. higher order or long- 

term carryover effect along with simple carryover effect. However, such three-period design 

is not unique and the study requires a comparative approach through appropriate 

nonparametric procedures to investigate the superiority among these designs under different 

model assumptions. In the next chapter, we like to concentrate on such issues. 
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