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Abstract: 

Accurate estimation of the physiologic limits of patients during their stay in the intensive care unit is 

critical for predicting mortality risk. However, patient populations in different ICUs may differ in age, 

severity of illness, and medication. Creating the models that are relevant for diverse populations poses 

a significant challenge. Existing models trained on data fromspecific ICUs may performpoorly in 

other settingsbecause of changes in the distribution of characteristics. To avoid those problems,we 

propose a deepsequence framework model topredictmortalityrisk based ontimeseries data received 

fromICUs.Weconductedexperimentsusingthepublic 

PhysioNet2012dataset,whichcontainsvitalsignsdatafrom6,000ICUpatientsfromfourdepartmentswith48

-timesteps.Ourmodelincludeslayersofconvolutional neural networks  andlong-termmemoryto correctly 

predict mortality risk. We used two layers of convolutional and a hidden layer with 16 nodes, and a 

group of instances as 32 as batch. 

Ourexperimentalresultsshowedanimpressiveaccuracyof93.4%andalossof0.0008054.Futureworkcouldf

ocusonexpandingvitalparameters,andvolume of the data 

set(acrossmultiplegeographicalregions)andensuringpatientdataconfidentiality. 

Keywords: Deep Learning, ICU patient, mortality risk factors, Transfer learning,  

I. Introduction 

In intensive care units (ICUs), patient mortality is a foremost concern. Identifying mortality 

risk factors can help  clinicians make informed decisions and improve patient outcomes. 

Machine learning (ML) techniques   rapidly  applied to ICU data analysis to create models 

that can  predict  patient outcomes with reliable accuracy. Effective management of drugs, 

care protocols, medical procedures, and other interventions is critical in determining the 

gravity of patient illness or injury. Physiological boundaries estimated during an ICU stay 

must be robust and discriminative across different patient populations. However, patients in 

different types of ICUs may differ in age, conditions, and medications, and models    trained 

with  patient data from a specific ICU may not perform well in other settings.  Mortality rates 
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appear to double during prolonged ICU stays. Accurately predicting mortality is necessary for 

medical care, as it provides an experimental risk estimate for assessing prognostic dynamics, 

guiding treatment decisions, and benchmarking hospitals. Precise prediction of mortality risk 

requires considering important clinical, physiologic, and demographic determinants. These 

variations can exist among various ICU patient populations.. In this research article, we 

propose a Deep Sequence Framework (DSF) to discover mortality causes for ICU patients 

using time-series data. 

Keywords: Deep Learning, ICU patient, mortality risk factors, Transfer learning,  

II. Survey of literature 

In medical services, predicting mortality risk is crucial for prognosis dynamics, patient care, 

and benchmarking medical clinics. Traditional methods rely on a fixed set of ICU 

confirmation credits and generalized clinical information, which are prone to bias and require 

significant manual effort.[17]. In response to these limitations, there may be a demand for 

modernized methods that can really mitigate these deficiencies. Clinical observation notes, 

along with deep learning models, present opportunities to capture  patient data and 

automatically identify related features..[4][11] 

One promising approach is to record all patient features at specific times and use the previous 

state to make robust mortality predictions. PhysioBank, PhysioToolkit, and PhysioNet offer 

researchers access to complex physiological signals, such as electrocardiograms and 

electroencephalograms, to support biomedical engineering research.[6] In comparison, 

traditional models use cascaded SVM-GLM models, which consist of two stages: an SVM 

classifier trained to generate  mortality predictions  and a GLM trained managing the 

predicted probability and original features. This method achieved an AUC-ROC of 0.851 and 

an accuracy of 0.784, outperforming other state-of-the-art methods.[9] 

To detect any deterioration of patients in the ICU or any unfavorable events, it is crucial to 

closely monitor them. Nonetheless, challenges arise in bed allocation due to the substantial 

demand for ICU services and restricted capacity. To tackle this issue, physicians must check 

the  patientswith the lowest discharge risk to alleviate admission delays for incoming patients. 

Healthcare databases like MIMIC-III exhibit scoring systems and AI models for predicting 

patient mortality.[1] [2]. Although these models have demonstrated encouraging outcomes, 
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the majority do not consider the evolving nature of patient conditions and provide a single 

score for the entire ICU stay.[22] 

Several studies have explored the prediction of ICU length of stay using various techniques 

such as deep learning, Deep ANN, and fuzzy classifiers[19]. Predicting the length of stay can 

be beneficial for cost control and resource planning. Yet, there are challenges in obtaining 

useful information due to changing length, inadequate sampling, and missing data. Certain 

research activities have also employed semantic interpretations and logical operators to 

connect features and predictions.[24] 

One successful tactic is the use of a powerful Support Vector Machine (SVM) classifier that 

trains six different SVMs to capture specific patterns that lead to patient outcomes. These 

SVMs are then combined using a linear model to predict patient survival[5]. More studies 

have proposed related approaches using a logistic regression classifier. These models use 

both broad and specific descriptors, including time-series features represented by 

measurement descriptors.[7] 

Mobley et al. have completed another study on ICU prognosis, using 74 factors on 557 

patients receiving coronary care. The research employed an Artificial Neural Network (ANN) 

and incorporated variables like patient characteristics, laboratory test outcomes, physiological 

data, vital signs, and diagnostic examinations.[2] 

Vairavan et. al. employed calculated relapse classifiers in sequence with Hidden Markov 

Models to capture time-series data. [16]. They utilized a Markov Chain to estimate the 

transition probability from patients being alive to mortality. This model was used to predict 

patient's survival probability at each time interval,  Later it was passed to the classifier along 

with the patient's general descriptors and selected feature. One noteworthy aspect of their 

model is that it does not require the entire 48-hour data to make a prediction, making it 

suitable for real-time monitoring. [13]. 

Davoudi, Anis, et.al .utilized a combination of wearable sensors, light and sound sensors, and 

cameras to collect patient and environmental data. It was used to develop an intelligent 

intensive care unit (ICU) system.[20] This system employs pervasive sensing and deep 

learning algorithms to automatically monitor patient health status and forecast adverse events. 

Using the saved data from various sources, including electronic medical records, wearable 
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sensors, and medical devices, deep learning algorithms analyze the information and generate 

real-time predictions of patient outcomes. This innovative ICU system has the ability to 

enhance patient outcomes by providing continuous monitoring and early detection of adverse 

events, enabling timely intervention. The outcomes of this study demonstrate the promise of 

using intelligence system and machine learning to improve patient care in the ICU. [20]. 

In their study, B Shickel et al. proposed a novel DeepSOFA[15] score framework that utilizes 

quick assessments and interpretable deep learning models to assess disease severity at any 

point during an ICU stay. They compared DeepSOFA with Sequential Organ Failure 

Assessment (SOFA) prediction models using the same input data and found that DeepSOFA 

offers significantly enhanced predictive accuracy of in-hospital mortality at any point during 

an ICU admission. A DeepSOFA model developed in an open database and validated in a 

single institutional partner showed a mean AUC for the total ICU stay of 0.90 (95% CI 0.90-

0.91), compared to standard SOFA models with a mean AUC of 0.79 (95% CI 0.79-0.80) and 

0.85 (95% CI 0.85-0.86). 

Christopher Rugg et al conducted a a research study to explore the correlation between 

hyperphosphatemia (high levels of phosphate in the blood) and injury severity, Additionally, 

it pertains to the mortality rates of poly-trauma patients joined to the intensive care unit 

(ICU). The researchers analyzed data from 61 patients who suffered from polytrauma and 

were joined to the ICU between 2013 and 2017. The findings revealed that 

hyperphosphatemia was significantly linked to shock, tissue damage, injury severity, and 

death in polytrauma patients. The study also explained that patients with hyperphosphatemia 

had longer stays in the ICU and better rates of mechanical ventilation.[23] 

F. Shann et al. developed and assessed the efficacy of the Paediatric Index of Mortality 

(PIM), which is a mortality estimate model for children receiving intensive care. The primary 

goal of PIM is to help healthcare practitioners estimate the stake of mortality in critically ill 

children and identify patients who might require more intensive treatment [29]. he PIM is 

presently utilized as a widely adopted instrument in pediatric intensive care units worldwide 

for the purpose of forecasting mortality risk and providing guidance for clinical decision-

making.[29] 

In their article, Shickel et al. present aanalysis of recent improvements in deep learning 

techniques used for analyzing electronic health records (EHRs) [25]. They highlight the 

prospective advantages of employing deep learning models for analyzing EHRs, which can 

specify valuable perceptions into patient health and medical history. The authors describe 



                  IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
                                             Research paper       © 2012 IJFANS. All Rights Reserved,  Volume 11, Sp.Iss  6 , 2022 

254  
  

 

different types of deep learning models that have been used for EHR analysis, including 

convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep belief 

networks (DBNs). They also discuss various applications of deep learning in EHR analysis, 

such as predicting patient outcomes, recognizing risk factors for diseases, and developing 

personalized treatment plans. The authors also address the challenges and limitations 

associated with utilizing deep learning techniques for EHR analysis. 

Komorowski et al. (2018) reviewed 26 research endeavours employing deep learning 

techniques to predict mortality in ICU patients. The authors found that deep learning models 

had higher accuracy in predicting mortality compared to traditional scoring systems such as 

APACHE and SAPS. 

After examining various research studies, it was observed that predicting the mortality rate of 

ICU patients encounters various obstacles, including the intricacy of patient cases, the 

absence of uniform data, the urgency of time, the limited number of patients, the interplay of 

variables, the quality and consistency of data, selection bias, and overfitting as a result of the 

restricted size of ICU datasets. It was discovered that by capturing abstract patient 

information and utilizing deep learning models, researchers can enhance mortality predictions 

and provide improved patient care. 

III Methodology: 

3.1 Data Collection and Pre-processing 

The Physio Net 2012 database was used to collect data utilized in this work. The database 

contains vital information sequences collected from four ICU units of 6,000 patients. We 

extracted data from the first 48 hours of ICU admission, incorporating vital signs, laboratory 

results, demographics, and diagnosis codes.  

The details include patient age, gender, height, and weight as overall group descriptors. 

Around the time of admission into the ICU, the patient details - the group descriptors are 

recorded. Details of these six group descriptors are recorded in Table 1. 

Table 1. Group descriptors. 

Descriptor Remarks Data type 

RecordID -Id gave to the patient Integer 
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Gender 0: Male, 1:Female Boolean 

Age  In years  Integer 

Height In cm Integer 

Type of the ICU  1: Coronary Care Unit 

2: Cardiac Surgery 

Recovery 

3: Medical ICU Unit 

4: Surgical ICU) 

Integer 

Weight In kgs Integer 

 

It included 37 essential time-series physiological parameters that were monitored over the 

course of 48 hours in the ICU.Table 2 shows the particulars of the vital parameters given in 

the Physionet challenge[15]. 

Table 2. Vital time-series parameters of patients were recorded in each hour. 

Albumin(gIdL)  HCT[Hematocrit(%)]  PaCO2 [partial pressure of 

arterial CO2(mmHg)]  

ALP[Alkaline phosphatase 

(IU/L)]  

HR[Heart rate (bpm)]  PaO2 [Partial pressure of 

arterial O2(mmHg)]  

ALT[Alanine 

transaminase (IU/L/L)]  

K[Senun potassium 

(mEq/L)]  

pH[Arterial pH (0-14)]  

ALT[Aspartate 

transaminase (IU/L)]  

Lactate(mmol)  Platelets(cells/nL)  

Bilrubin(mg/dL)  Mg[Serum magnesium 

(mmol/L)]  

RespRate Respiration rate 

(brat)]  

BUN[Blood urea nitrogen 

(mg/dL)] 

MAP[Invasive mean 

arterial blood pressure 

(mmHg)]  

Sa02[O2 saturation in 

hemoglobin (°/0)]  

Cholesterol(mg/dL)  Mach Vent[Mechanical 

ventilation respiration 

SysABP[Invasive systolic 

arterial blood pressure 
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(0:false, or 1 :true)]  (mmHg)]  

Creatinine [Serum 

creatinine (mg/dL)] 

Na [Serum sodium 

(mEq/L)]  

Temp [Temperature (°C)]  

DiasABP[Invasive 

diastolic arterial blood 

pressure (mmHg)] 

DiasABP[Non-invasive 

diastolic arterial blood 

pressure (mmHg)]  

Tropl[Troponin-I (ug/L)]  

FiO2 [Fractional inspired 

O2(0- 1 )]  

NIMAP[Ision-invasive 

mean arterial blood 

reassure (mmHg)]  

TropT[Troponin-T(g/L)]  

GCS[Glasgow Coma 

Score (3-15)] 

NisysABP[Non-invasive 

systolic arterial blood 

pressure (mmHg)]  

Urine [Urine output (mL)]  

Glucose [Serum glucose 

(mg/dl)] 

HCT[Hematocrit(%)] WBC[Arliite blood cell 

count (cells/nL)]  

HCO3 [Serum bicarbonate 

(mmol/L)]  

 Weight(kg)*  

Albumin(gIdL)   PaCO2 [partial pressure of 

arterial CO2(mmHg)]  

The data distribution, according to the ICU type, is identified for further analysis, as depicted 

in Figure 1. The Cardiac ICU has more patients compared to the Medical, Surgical and 

Coronary Units. 
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We then processed the data to remove missing values and standardized the numerical 

features.The vital information collected for each hour might not be recorded for all vital 

parameters. For example, at a point, i.e., at 2 hours 18 minutes, only nine vital information of 

the patient has been recorded, as explained in Figure 2. So handling missing values among 

the 37 vital information for each hour is a very complex task. 

 

 Figure 2. Vital information of a patient. 

The missing data points within the provided dataset are depicted in the following Figure 

3.And observed that height is missing for 1894 patients. 

 

 

Figure 3. Missing values count in the dataset. 
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The data parameters recorded at 48 timestamps are displayed in Figure 4, illustrating the 

observations of heart rate (HR) and respiratory rate for each timestamp. However, 

temperature and platelet readings were not consistently recorded, resulting in missing data. In 

response to this concern, we substituted the missing values with the average value of the 

corresponding parameter. 

 

Figure 4. Parameter values were recorded in 47 timestamps. 

 

3.2 Deep Sequence Framework 

The proposed DSF consists of three main components: a feature extraction module, a 

sequence modeling module, and a mortality prediction module. The attribute  extraction 

module is responsible for extracting relevant vital features from the recorded 37 features 

within 48 hours' time-step. In this prediction work , we used a combination of convolutional 

neural networks (CNN) and long short-term memory (LSTM) networks to extract temporal 

and spatial attributes from the data. The sequence modeling module takes the unearthed 

features as input and learns the temporal dependencies between the features using an LSTM 

network. The mortality prediction module takes the output from the sequence modeling 
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module as input and estimates the likelihood of patient mortality using a  connected neural 

network. 

3.2.1 Feature extraction module: 

The first part of the DSF is the attribute extraction module. This module is responsible for 

identifying relevant vital features from the recorded 37 features with a 48-hour time-step. The 

feature extraction module uses a combination of convolutional neural networks (CNN) and 

long short-term memory (LSTM) networks to extract both temporal and spatial attributes 

from the data. 

The algorithm to extract attributes using CNNLSTM model is  

Let X be the input data, where X = {x1, x2, ..., xn} represents a sequence of n samples. 

Convolutional Neural Networks (CNN) (X): 

The CNN layer is used to get spatial attributes from the input sequence. The input X is passed 

through a set of convolutional filters, which detect various spatial features available in the 

data. Each filter produces a feature map, which is a 2D matrix of values that highlights the 

presence of a specific feature in the data. The output of the CNN layer can be represented as 

follows: 

Step 1: F = CNN(X) 

where F = {f1, f2, ..., fm} represents a set of m feature maps, each of size h x w. 

Step 2: Long Short-Term Memory (LSTM) Networks: 

The LSTM layer is used to extract temporal features from the input sequence. The end 

value  of the CNN layer is fed as input to the LSTM layer, which is responsible for 

capturing the temporal dependencies between the different feature maps. The LSTM 

layer uses a set of gates to manage the flow of information and selectively store or 

discard information from the preceding time step. The output of the LSTM layer can 

be denoted as follows: 

H = LSTM(F) 

where H = {h1, h2, ..., hn} represents a sequence of n hidden states, each of size d. 

Step 3: Feature Fusion: 
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The final step is to fuse the spatial and temporal features obtained from the CNN and 

LSTM layers, respectively. This is done by adding  the final hidden state of the LSTM 

layer with each of the feature maps produced by the CNN layer. The resulting feature 

vector can be symbolized as follows: 

V = [h_n, f_1, f_2, ..., f_m] 

where V is a feature vector of size (d + mhw). 

 

 

Figure 6. Deep sequence framework model. 

 

3.2.2 Sequence model and predicting the mortality : 
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We used LSTM to learn the temporal dependencies between the features. The LSTM takes as 

input the sequence of spatial features ‘ V’ extracted by the CNN and outputs a prediction for 

the mortality of the patient. The outcome of sequence modeling primarily consists of a series 

of feature representations that effectively capture the temporal relationships among the 

essential features. Let h_t be the hidden state of the LSTM at time step t, and let p(y_i|f(x_i)) 

be the predicted probability of mortality for patient i given the sequence of spatial features 

extracted by the CNN. The LSTM can be defined as: 

h_t = LSTM(h_{t-1}, f(x_i)) 

p(y_i|f(x_i)) = sigmoid(W_h*h_t + b) 

where LSTM represents the long short-term memory cell, W_h represents the learnable 

weights of the output layer, and sigmoid represents the sigmoid activation function. 

During training, we can minimize the binary cross-entropy loss between the predicted 

probability of mortality and the true label using gradient descent: 

L = -y_i * log(p(y_i|f(x_i))) - (1 - y_i) * log(1 - p(y_i|f(x_i))) 

The model can undergo end-to-end training using backpropagation through time to modify  

the weights of both the CNN and the LSTM. Once the model is trained, it can be used to 

predict the mortality of new patients based on their vital feature data.   

 

3.3. Evaluation Metrics 

We evaluated the performance of the DSF using the area under the receiver operating 

characteristic curve (AUC-ROC) and accuracy. We also conducted a feature importance 

analysis to identify the most important features for mortality prediction. 

IV . Results 

The vital parameter is given as response to this LSTM model, and the time's steps are 

considered as 48. For example, if x is a BP parameter, then the recorded BP values recorded 

during the stay in ICU in 48 hours are considered for a time slot. Using the Data Generator in 
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KERAS, we transformed all the parameter values into 48-time steps. The HR and Urine vital 

parameters readings of a patient are represented in the following diagram Figure 8. The heart 

is observed stable compared to the urine reading in the 48 hours. 

 

Figure 8 The vital parameters HR, Urine with time steps. 

4.1. Training Data 

First, the CNN model extracts important features and converts them into a vector format. 

Then, using data generator sequences, two LSTM models are learned with the extracted 

features over 48 time steps. The CNN model uses a kernel size of (3,3) with 32 nodes in the 

first convolution layer, followed by a second convolution layer with 64 nodes, and a third 

convolution layer with 16 nodes. The output of the third convolution layer is fed into the 

LSTM layer. Figure 9 provides a detailed description of the model. 

 

Figure 9.The  CNN LSTM model for extracting the features 

To predict critical ratings and mortality risk, we utilized an LSTM many-to-one model that 

was taught using 48-time steps of available historical data, with a batch size of 32. The 

model's architecture is depicted in the diagram below, where each rectangle represents a 

layer. Figure 10 displays the convolution layers and their corresponding feature size. Initially, 



                  IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
                                             Research paper       © 2012 IJFANS. All Rights Reserved,  Volume 11, Sp.Iss  6 , 2022 

263  
  

 

the model receives 37 vital parameters, which are reduced to 24 features after feature 

extraction using the CNN layers. These features are then inputted into the LSTM layer, and 

the final output layer is used to predict the patient's mortality using the 24 vital parameters. 

We randomly split the dataset into training (70%), validation (10%), and testing (20%) sets.  

The convolutional layers of the CNN are responsible for gettingattributes from the input data. 

Each convolutional layer consists of a set of learnable filters or kernels, which are applied to 

the input data to produce a set of characteristic maps.It is represented in Figure 10. 

 

Figure 10. The CNN and LSTM model with the details of each 

layer  

 

Figure 11 displays the loss for every epoch during the testing of the model with the test data. 

The model parameters are trained and the weights are updated using gradient descent. The 

cost/loss function is evaluated using the error during training. Model performance is 
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calculated using the loss function, and to prevent overfitting and improve performance, a 

regularization term 'R' is included. The loss is calculated as 𝐿oss = 𝐸 (y,y’) + λ𝑅, where y and 

y’ represent the true and predicted values respectively, and λ is the regularization parameter. 

 

Figure 11.  Generated loss from the model for 31 50 epochs 

 

After testing the model with 4000 testing data points, the mortality and survival outcomes 

were determined and presented in Figure 12. The model attains an accuracy rate of 93.4%. 

The model successfully predicted both mortality and survival outcomes and Figure 12 

provides a breakdown of the total number of predicted survivals and mortalities. Some of the 

most important characteristics for mortality prediction were age, mean arterial pressure, and 

serum creatinine levels. 
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Figure 12  The model predictions. 

Figure 13 shows the accuracy and loss of validation data and test data of the model. 

Compared to test data, validation data shows prominent results. 

            

     

         Figure 13. Accuracy and 

loss of model for training and validation data sets. 

Statistical analysis We compared the performance of DSF with other standard deep learning 

algorithms, such as RNN [19], Convolution neural networks  [12], and Deep ANN   [20].  

The evaluation of model performance was centered on discrimination, gauged through two 

commonly employed metrics: the area under the receiver operating characteristic curve 

(AUROC) and the area under the precision-recall curve (AUPRC). Additionally, positive 

predicted value (PPV), negative predicted value (NPV), and accuracy were assessed for all 
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models and are presented in Table 3. When trained with the PhysioNet dataset, the RNN 

model predicted mortality with 90.2% accuracy, while the CNN model achieved 91.3% 

accuracy, and the ANN model achieved 88.2% accuracy. 

 

Table 3. Evaluation of models. 

Model Accuracy Precision 

RNN 90.2 89.8 

CNN 91.3 90.7 

ANN 88.2 86.4 

CNNLSTM 93.4 93.1 

The proposed Deep sequence framework model with CNNLSTM layers predicts 93.4% 

accuracy which shows a significant improvement from the previous models. 

 

 

Figure 14. The comparison graph. 

 

Figure 14 describes the comparison between the RNN, ANN, CNN, and CNNLSTM 

model's accuracy and precision. All the models are trained with the same PhysioNet data 

set. 
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V . Discussion: 

Our results indicate the efficacy of the deep sequence framework model for mortality 

prediction of ICU patients. The DSF model had a high level of accuracy indicating its 

potential for clinical use. The spatial and temporal features extracted from the model 

provided insights into features that contribute to mortality prediction, which could aid 

clinicians in decision-making.When deploying early warning systems (EWS) in ICU 

settings, it is imperative to consider both accuracy and false alarm rates. Our model can 

support generating warnings also. It was necessary in this instance sensitivity and 

specificity carefully evaluated and optimized. 

First, the limited generalizability of our results may be because we only used data from 

one location. Future research could assess the model's performance using information from 

28 hospitals in several areas. Further study is required to see whether it is effective at 

predicting mortality in other healthcare contexts because, second, we only considered 

mortality prediction in critical care settings.  

 

VI Conclusion 

In this study, we proposed a DSF for recognizing mortality risk factors for ICU patients. 

Our results established that the DSF can accurately predict patient mortality using time-

series data. The discovered risk factors can help clinicians make informed decisions and 

improve patient outcomes. Experiments carried out in diverse ICUs indicate that our 

recently introduced deep sequence framework model outperforms existing benchmarks in 

predicting the risk of mortality.The model accomplished an accuracy of 93.4% and a loss of 

0.0008054, demonstrating the potential of deep learning methods for predicting mortality in 

ICU patients. Subsequent research can delve into the application of the DSF in clinical 

environments and examine the model's interpretability. 
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