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Abstract

In this article certain kinds of intuitionistic semi * connectedness and intuitionistic semi *
compactness are defined in intuitionistic topological space and their characteristics are
investigated. Here we introduce intuitionistic semi * connectedness, intuitionistic semi * C;—

connectedness (i = 1,2,3,4,5), intuitionistic semi * compactness and obtain many properties.
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1 INTRODUCTION

Atanassov [6] is the person who first presented the idea of intuitionistic set. After that this
concept is generalized to intuitionistic sets in [1], [2] and intuitionistic topological spaces in
[3]. An idea of intuitionistic connectedness and intuitionistic compactness in intuitionistic
topological space is given in [5]. In this article we establish the concepts of intuitionistic

semi * connectedness, intuitionistic semi * Ci— connectedness, intuitionistic semi *
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compactness, intuitionistic semi * lindelof spaces. Also we encounter their basic properties
and explore their relationship with already existing concepts.

2 PRIME NEEDS

Definition 2.1. Let X be a nonempty fixed set. An intuitionistic set (IS in short) A is an object
having the form A; = < X, AY, A® > where A% and A® are subsets of X such that A" N 4@
= @. The set @ is called the set of member of A, while A®) is called the set of non member
of Ag.

Definition 2.2. An intuitionistic topology (IT in short) by subsets of a nonempty set X is a
family T of IS’s satisfying the following axioms.

(@)@ ,X €t

(b) U, NV, e cforeveryU; ,V; €T

(c) UUg, €t foranyarbitrary family { Ui € J} S 7.

The pair (X, 7) is called an intuitionistic topological space (ITS in short) and any IS U, in T is
called an intuitionistic open set (10S). The complement of an 10S U, in 7 is called an
intuitionistic closed set (ICS)

Definition 2.3. Let (X, 7) bean ITS and U; =< X, U®, U@ > be an IS in X, U, is said to be
intuitionistic generalized closed set (briefly Ig — closed set ) Icl(U;) < A; whenever U, € A,
and 4; is 10 in X.

Definition 2.4. If U; is an 1S of an ITS (X, 1), then the intuitionistic generalized closure of U

is is denoted by IcI*(U;) and is defined as
lc*(U,) = {E; : E; is Ig — closed set and U;; < E }.
Definition 2.5.

Q) intuitionistic semi * open sets if there is an intuitionistic open set G in X such that
U, c A; < lcI*(U,).

(i) intuitionistic semi * closed set if X - A, is intuitionistic semi * open.
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Definition 2.6. The intuitionistic semi * interior of A is defined as the union of all

intuitionistic semi * open sets of X contained in A. It is denoted by 1S*int(4;).

Definition 2.7. The semi * closure of an IS A, is defined as the intersection of all

intuitionistic semi * closed sets in X that containing Ag. It is denoted by IS*cl(4;).
Theorem 2.8. Let (X, 1) be an ITS and A be any ITS. Then

() A is intuitionistic semi * regular if and only if IS *Fr(4;)= @;.
(i) IS «Fr(A;) = 1S *cl(Ag) N IS *cl(X — 4;).

Definition 2.9. The function f: (X, 11) — (Y, 1) is said to be intuitionistic semi *

continuous (summarizing 1S*-Cts) if f=1(4;) is 1IS*O in (X, t1)for every 10S A; in (Y, 12).

Definition 2.10. Two IS's E and F are said to be overlapping if E & X— F. Conversely E and
F are said to be nonoverlapping, if E € X — F. Notice that E ¢ X — F ifand only if E® ¢
F ore® 2 F@.

3 INTUITIONISTIC SEMI * CONNECTED

Definition 3.1. An ITS (X, t) is said to be an intuitionistic semi * connected if X; cannot be

expressed as the union of two disjoint nonempty 1S*O sets in X.
Theorem 3.2. Every intuitionistic semi * connected is intuitionistic connected.

Proof. Let X be an intuitionistic semi * connected. To prove X is an intuitionistic connected.
Suppose X is not an intuitionistic connected. Then there exist a disjoint nonempty 10S U,
and V; such that X; = U, U V, . Since U; and ¥, are 10S, both U, and V, are 1S*O. This is
a contradiction to X is an intuitionistic semi * connected. Hence X is an intuitionistic

connected.

Remark 3.3. The converse of the above theorem need not be true as shown in the succeeding

example
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Example 3.4. Let X = {i, j, k} and © = {X}, @;, <X, {j}, {i, K} >, < X, {i}, {i} >, < X, {i, j},
@ >}. ThenIS*O(X, 1) ={X;, @1, <X, {i}, {i, K} > < X, {i}, {i} >, < X, {i, j}, 8 >, < X, {i,
k}, {0} >}. Clearly X is an intuitionistic connected but not an intuitionistic semi * connected.

Theorem 3.5. Every intuitionistic semi connected is intuitionistic semi * connected.

Proof. Let X be an intuitionistic semi connected. To prove X is an intuitionistic semi *
connected. Suppose X is not an intuitionistic semi * connected. Then there exist a disjoint
nonempty 1S*O sets U; and V; such that X; = U; U V. Since U; and V; are IS*O, both U
and V; are 1SO sets. This is a contradiction to X is an intuitionistic semi connected. Hence X

is an intuitionistic semi *connected.

Remark 3.6. The converse of the above theorem need not be true as shown in the succeeding

example.

Example 3.7. Let X = {i, j, k} and © = {X], @;, < X, {i}, {j, k} >, <X, {k}, {i, j} >, < X, {i,
Kk}, {i} >} Then IS*O(X, t) = {X, @1, <X, {i}, {i, K} >, <X, {k}, {i, ji} > < X, {i, k}, {j}
> <X, {i}, {k} >, < X, {k}, {i} >, < X, {i. k}, @>}. Then X is an intuitionistic semi *

connected but not an intuitionistic semi connected.

Theorem 3.8. An ITS (X, 1) has the only intuitionistic semi * regular subsets are @; and X;

itself then (X, 1) is an intuitionistic semi * connected.

Proof. Assume that @; and X; are the only intuitionistic semi * regular subsets of X. To prove
X is an intuitionistic semi * connected. Suppose X is not an intuitionistic semi * connected.
Then there exist a disjoint nonempty 1S*O sets U, and ¥/ such thatX; = U, U V.
Therefore U; = X — V. is IS*C. Hence U is an intuitionistic semi * regular which is

contradiction to our assumption. Hence X is an intuitionistic semi * connected.

Theorem 3.9. AnITS is an intuitionistic semi * connected if and only if every nonempty

proper subsets of X has nonempty intuitionistic semi * frontier.

Proof. Let X be an intuitionistic semi * connected and A be any nonempty 1S of X. To prove

IS*Fr(A) # @,. Suppose IS*Fr(A) = @;. Then by theorem 2.8, A is an intuitionistic semi *
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regular. Now by theorem 3.8, A is not an intuitionistic semi * connected. This is a
contradiction to our hypothesis. Therefore IS*Fr(&) # @,;. Conversely, assume that A is any
nonempty IS of X such that IS*Fr(A) # @;. To prove X is an intuitionistic semi * connected.
Suppose X is not an intuitionistic semi * connected. Then there exist a nonempty I1S*O sets
U, and V; suchthat X; = U; U V. Therefore U; = X — V, . Hence U; is both 1S*O and
IS*C. Therefore by theorem 2.8, IS*Fr(A) = @, which is a contradiction to our assumption.

Thus X is an intuitionistic semi * connected.

Theorem 3.10. Let (X, t1) and (Y, t2) be the two ITS and f: X — Y be the surjection map,
intuitionistic semi * continuous and X be an intuitionistic semi * connected. Then Y is an

intuitionistic semi * connected.

Proof. Let f: X — Y be the surjection, intuitionistic semi * continuous and X be an
intuitionistic semi * connected. Assume that Y is not an intuitionistic semi * connected thats
lead us to there exist a disjoint nonempty 1S*O sets U, and V; suchthatY; = U, U V.
Since fis an 1S*-Cts, f~1(U,) and f~(U;) is IS*O in X. Since U; # @; and U, #

@1, f~1(U;) # @;and f~1(U;) # @;. We have ¥; = U, U V, implies f~1(Y) = f~1(U;) U
f1(V;). Therefore X; = f~1(Us) U f~1(V;) and f~2(T;) n f~4(V;) = F2(U; n
VG= /—1@1=0l. Therefore (X, t1) is not an intuitionistic semi * connected. This is a
contradiction to our hypothesis. Hence (Y, t2) is an intuitionistic semi * connected.

Theorem 3.11. Let (X, 11) and (Y, 12) be the two ITS and f: X — Y be an injection map IPS*O
and IPS*C. If Y is an intuitionistic semi * connected, then X is an intuitionistic semi *
connected.

Proof. Assume (X, 11) is not an intuitionistic semi * connected thats lead us to there exist a
nonvoid 1S*O sets U, and V; suchthat¥; = U; U V, and U, n V;, = @,. Then U, = X —
V.Therefore U, is both 1S*O and IS*C in X. We have f: X = Y is both IPS*O and IPS*C,
£~1(T;) is both 1IS*O and IS*C in Y . Therefore by theorem 2.8, IS * Fr(f ~1(U;)) = @,.
Thus by theorem 3.9, Y is not an intuitionistic semi * connected which is contradiction.
Hence (X, 11) is an intuitionistic semi * connected.

Theorem 3.12. Let (X, t1) and (Y, 12) be the two ITS and f: X — Y is an IS*O and IS*C
injection map and (Y, 12) is an intuitionistic semi * connected, then (X, 1) is an intuitionistic
connected.
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Proof. Assume (X, 11) iS not an intuitionistic connected thats lead us to there exist a
nonempty 10 sets U, and ¥, suchthat Y = U, U V;and U; N V; = @,. Then U, = X —
V. Therefore U, is both 10S and ICS in X. Then U, is both 1S*O and IS*C. Since f is both
IS*O and 1S*C, f(U;) is an intuitionistic semi * regular in Y. Therefore by theorem 2.8,

IS «Fr(f((U;)) = @,. Thus by theorem 3.9, Y is not an intuitionistic semi * connected which
is contradiction. Thus (X, ;) is an intuitionistic connected.

Definition 3.13. Let (X, 1) be an ITS and U;; be any IS of X. If there exist 1S*O sets A and B
in X satisfying the following properties, then Uj; is called intuitionistic semi * Ci—
disconnected.

() C:U;cAUBANBCSX-U; U;NA #0,0U;NB #@,.
(i) CxU,€AUB, U, NnANB=0,0,NA #0;,0;,NB #0,.
(i) Cy U, CAUBANBcX-0, A ¢X-0,B ¢X-0,.
(iv) CsuU,<AUB,U;,NnANB=0,AcX-0U;BcX-U,.

>

Definition 3.14. Let (X, t) be an ITS and U, be any IS of X. If U, is said to be an
intuitionistic semi * Ci— connected, then U, is not an intuitionistic semi * C;— disconnected
where i =1,2,3,4.

Theorem 3.15. Let (X, t) be an ITS and U, , V; be any two IS of X. If U, , V, are

intuitionistic semi * C;— connected and U, N V; # @;, then U, U V; is also an
intuitionistic semi * C;— connected.

Proof. Let U, , V be intuitionistic semi * C;— connected. Suppose U; U V; is not an
intuitionistic semi * C;— connected. Then there exist an 1S*O set C and D such that U; U ¥,
cCuD,CuDeX—(U,uV,),(U;,uV,)NC=+d and@; uV,)ND # @, Since U;
and V; are intuitionistic semi * C;— connected, U, N C=@,or U, N D=@; and V; N C =@,
or V; ND=@,.Since U, N V; # @, pivE Uz N V.

Case (i) Let Ug N C =, and Vo NC=8,. Then (U; NC) U (7, N ) =8, = (T u V) N T
= @, which is a contradiction.

Case (i) Let U, ND =@, and 7, ND=@,. Then (T; ND)u (7, N D) =8, = (U, u V)N
D = @, which is a contradiction.

Case (iii) Let U; N C=@; and V; N D = @,;. Then piv & C and pyv & D. This is impossible
because piv € Uz N V; = Cu D.
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Case (iv) Let U; N D =@; and V; N C = @,. This case is similar to case (iii).
Hence from the above four cases U; U V; is an intuitionistic semi * Cy— connected.

Theorem 3.16. Let (X, 1) be an ITS and U;; , V, be any two IS of X. If U , V; are

intuitionistic semi * C,— connected and U, NV, # @, then U; U ¥ is also an intuitionistic
semi * C,— connected.

Proof. Let U;; , V; be intuitionistic semi * C,— connected. Suppose U; U V is not an
intuitionistic semi * C,— connected. Then there exist an 1S*O set C and D such that U; U V;
cCuD,(U,uV,)NCND=6, (U, uV,)NC=#@;and (U; UV;)ND = @,. Since U,
and ¥, are intuitionistic semi * C,— connected, U, N C =@, or U; N D = @; and V;N C = @,
OI‘ VGﬂ ﬁ = 61. SII’]CB UG ﬂ VG #: 61, 13|V E HGQ VG'

Case (i) Let U; N C=@; and V;, N C = @,. Then (T, N C) u (V; NC)= 0, = (U, uV;) NC=
@, which is a contradiction.

Case (i) Let U; N D =@, and V; ND = @,. Then (U, ND)u (V, ND)=0, = (U, u¥,)ND
= @, which is a contradiction.

Case (iii) Let U, N C=@;and V,N D = @,. Then prv ¢ Cand fiv & D. This is impossible
because piv € Uz NV, € CuD.

Case (iv) Let U; N D = @; and V; N C = @,. This case is similar to case (iii).
Hence from the above four cases U; U V is an intuitionistic semi * C,— connected.

Theorem 3.17. Let (X, t) be an ITS and U, , V,; be any two IS of X. If U; and V; are

overlapping intuitionistic semi * Cs— connected, then U; U ¥, is also an intuitionistic semi *

Cs— connected.

Proof. Assume U; U V; is not an intuitionistic semi * Cs— connected thats lead us to there
exist an IS*O sets E and F suchthat U, UV, cEUF,ENFe X- (U, uV,), E g X (U, U
V:), F &€ X (U, u ;). Since U; and V; are intuitionistic semi * Cs— connected, E € X —
U,orFcX—-U;and E € X -V, or F € X — V. Also by hypothesis U, and V, are
overlapping, there is a point p, (p; € U; , Pwv € V) or there is a point g, (G € V; , G €
Ug).
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which is contradiction to E & X —(U; U ;).

Case (ii) Let F € X — U; and F € X — ;. This is similar to case (i).

Case (iii) Let E € X — U, and F € X — V.. Suppose there is a point p, (p1 € U; , piv € V).
SinceEcX-U;andFeX-V;, U;UV,cEUFcX-U,)uX-V;)=X-(U; N
V). Therefore U; NV, € X —(U; UV;) = (X—U;) U (X—V;). We have p, € U; and piv €
V.=pveU;,=2pvelU;, NV, c(X-U;)N (X-V;)=pwveEX—U; and piv € X
—V,which is a contradiction. Similarly if there is a point g, (G € V; , §w € Us;), we get a

contradiction.

Case (iv) Let E € X —V; and F € X — ;. This is similar to case (iii).

Therefore from the above four cases U;U V; is an intuitionistic semi * Cs— connected.

Theorem 3.18. Let (X, t) be an ITS and U, , V,; be any two IS of X. If U; and V;; are
overlapping intuitionistic semi * C,— connected, then U; U ¥, is also an intuitionistic semi *

C4— connected.
Proof. The proof is similar to previous theorem.

Definition 3.19. The ITS (X, 7) is said to be an intuitionistic semi * Cs— disconnected if there

exists an 1S*O and IS*C set E; such that ¢ = E; + X.

An ITS (X, 1) is called intuitionistic semi * Cs— connected (summarizing I1S*-Cs ctd) if X is

not an intuitionistic semi * Cs— disconnected.
Theorem 3.20. Every 1S*-Cs ctd space implies intuitionistic connected.

Proof. Let (X, 1) be an IS*-Cs ctd. Assume X is not an intuitionistic connected thats lead us to
there exist a nonempty 10S U, and V, such that X = U, u V, and U; UV, = ¢. Since U,
and V, are 10S, both U, and V, are IS*O. We have U, NV, =¢ and U, UV, = X.
Therefore Uél)ﬂ Va(l) =¢, U((;Z) UVG(Z) =X, U((;l) UVc(l) = X and U(E,Z) ﬂVG(Z) = ¢. Thus U =
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X -V, and V;, =X — U, . Therefore U; and V; are intuitionistic semi * regular which is

contradiction to our assumption. Hence (X, 7) is an intuitionistic connected.
Theorem 3.21. Every 1S*-Cs ctd space implies intuitionistic Cs-connected.

Proof. Assume (X, t) is not an intuitionistic Cs— connected thats lead us to there exist an
intuitionistic clopen set E; such that ¢ # E; # X. Since E is an intuitionistic clopen, E; is
both I1S*O and IS*C set. Thus Ej is not an 1S*-Cs ctd which is a contradiction to our

assumption. Thus (X, 1) is an intuitionistic Cs—connected.
Theorem 3.22. Every intuitionistic semi Cs-connected space implies 1S*-Csctd.

Proof. Assume (X, 1) is not an 1S*-Cs ctd thats lead us to there exist a nonempty proper IS E,
of X such that E is an intuitionistic semi * regular. Since Ej is both IS*O and 1S*C, E; is an
ISO and ISC. Thus X is an intuitionistic semi Cs— disconnected which is a contradiction to
our assumption. Hence (X, 1) is an 1S*-Cs ctd.

Theorem 3.23. Every 1S*-Cs ctd space implies 1S*-ctd.

Proof. Assume (X, t) is not an 1S*-ctd thats lead us to there exist nonempty 1S*O sets £, and
F; in (X, vy such that E° UFY = X, EP NFP = ¢, ESY NEY = g and EPUE? = X,
Therefore E; = (X— F;). Hence E is both IS*O and IS*C. Thus X is an 1S*-Cs disconnected.

Hence X is an 1S*-ctd.
4 INTUITIONISTIC SEMI * COMPACT SPACES

Definition 4.1. Let D be a family of IS*O sets of X, and let (X, t) be an ITS. Then the

collection P is called an intuitionistic semi * open cover (summarizing 1S*-OC) of X if UD =

X,.

Definition 4.2. An ITS (X, 1) is said to be an intuitionistic semi * compact (summarizing 1S*-

cpt) if every 1S*-OC of X has a finite subcover.
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Theorem 4.3. Let (X, 1) be an ITS. Then the following results hold.
(1) Every 1S*-cpt implies intuitionistic compact.
(i) Every intuitionistic semi compact implies 1S*-cpt.

Proof. (i) Let (X, 1) be an 1S*-cpt and {U,} be an intuitionistic open cover for X. Then {U,}
is an 1S*-OC for X. Since X is an 1S*-cpt, {U,} has a finite subcover. Hence X is an

intuitionistic compact.

(ii) Let (X, 1) be an intuitionistic semi compact and {D.} be an 1S*-OC for X. Then {D.} is
an intuitionistic semi open cover for X. Since X is an intuitionistic semi compact, {D.} has a

finite subcover. Hence (X, t) is an IS*-cpt.

Theorem 4.4. Let (X, 1) be an ITS. Then (X, 1) is IS*-cpt if and only if every family of IS*C

sets in X with void intersection has a finite subfamily with void intersection.

Proof. Let (X, t) be an IS*-cpt and {U,}.e; be a family of IS*C sets in X such that N{Uy}ue;
= @;. Then U {X — U}ues = X; is an 1S*-OC for X. Since X is an 1S*-cpt, X has a finite
subcover, namely {X — Uy, X = Ug, ..., X — Uan } for X. Therefore X = Uiz1on { X — Uui}-
Thus Niz110n { Uy} = @;. Conversely, assume that every family of I1S*C sets in (X, 1) with
empty intersection has a finite subfamily with void intersection. Let {D,}.e; be an 1S*-OC for
(X, 7). Then U {D,}ues = X;. Therefore {X — D,}oes = @;. Since X — D, is IS*C set for each
a € J, by hypothesis there is a finite subfamily has a empty intersection. That is Nj=1ton (X—

D,) = @;. Then Uj-11n Da = X;. Hence (X, 1) is an 1S*-cpt.

Theorem 4.5. Let (X, 11) and (Y, 1) be any two ITS and f: (X, 1) — (Y, 12) be an IS*O
function. If (Y, 12) is an IS*-cpt, then (X, t;) is an IS*-cpt.

Proof. Let {F.,} be an 1S*-OC for (X, t1). Then {f (F,)} is an 1S*-OC for (Y, t2). Since
(Y, 1o) is an 1S*-cpt, {f(F,)} has an finite subcover, namely { f(F.1), f(Fw), ..., f(Fu)}-

Therefore {F.1, Fo, ..., Fon } is a finite subcover for( X, 11). Hence (X, t1) is an 1S*-cpt.

Theorem 4.6. Let (X, 11) and (Y, 12) be any two ITS and f: (X, 11) — (Y, 12) be an 1IS*O

function. If (Y, 12) is an IS*-cpt, then (X, 1) is an intuitionistic compact.
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Proof. Let {E,}be an intuitionistic open cover for (X, t;). Since fis an 1IS*O and {E,} is an
intuitionistic open cover for (Y, t2), {f (Eq )} is an IS*-OC for (Y, 12). Since (Y, t2) is an 1S*-
compact, {f (E, )} has an finite subcover,namely {f(E,.), f(E2), ..., f(Eun)}. Therefore {E,,,

Ew, ..., Ea} is a finite subcover for( X, 1). Hence (X, t1) is an intuitionistic compact.

Theorem 4.7. Let (X, 1) and (Y, 12) be any two ITS and f: (X, t1) — (Y, 12) be a surjection
and I1S*-Cts function. If (X, t1) is an 1S*-cpt, then (Y, 1) is an intuitionistic compact.

Proof. Let {F.,} be an intuitionistic open cover for (Y, 12). Since fis an 1IS*-Cts, {f~* (F,)} is
an 1S*-0C for (X, 11). Since (X, t1) is an 1S*-cpt, {f~* (F,)} has finite subcover, namely
{f* Fu), f~ ' (Fo), ..., fH(Fun)}. Therefore {F,i, Foo, ..., Fon } is a finite subcover for

(Y, 12). Hence (Y, 12) is an intuitionistic compact.

Definition 4.8. An ITS (X, 1) is said to be an intuitionistic semi * Lindelof (Ssummarizing
IS*-L) if every 1S*-OC contains countable subcover.

Theorem 4.9. Let f: (X, 11) — (Y, 12) be an surjection, I1S*-Cts and (X, t1) be an 1S*-L. Then

(Y, 12) is an intuitionistic lindelof.

Proof. Let (X, t1) be an 1S*-L and {F,} be an intuitionistic open cover for (Y, t2). Then
{f~1 (F,)} is an 1IS*-OC for (X, 11). Since (X, 11) is IS*-L, {f~* (F,)} contains a countable
subcover say, {f ! (Fu)}. Then {F..} has a countable subcover for (Y, 12). Thus (Y, 1) is an

intuitionistic lindelof.

Theorem 4.10. Let f: (X, t1) — (Y, 12) be an surjection, IS*-Irresolute and (X, 1) be an I1S*-
L. Then (Y, 12) is an 1S*-L.

Proof. Let (X, t1) be an 1S*-L and {F,} be an IS*-OC for (Y, 12). Then {f~* (F,)} is an 1S*-
OC for (X, 11). Since (X, 11) IS IS*-L, {f~* (F,)} contains a countable subcover say,
{f~* (Fon)}. Then {Fu.}is a countable subcover for (Y, 12). Thus (Y, 12) is an 1S*-L.

Theorem 4.11. Let f: (X, 1) — (Y, 12) be an intuitionistic pre semi * open and (Y, t12) be an
IS*-L. Then (X, t7) isan  I1S*-L.
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Proof. Let (Y, t2) be an IS *—L and {D,} be an IS*-OC for (X, t1). Then {f(D,)} is an
IS*-OC for Y . Since (Y, 12) is IS*-L, {f(D,)} contains a countable subcover say, {f(Du)}.
Then {D..! is a countable subcover for (X, 7). Thus ( X, ©1) isan  1S*-L.

Theorem 4.12. Let f: (X, 1) — (Y, 12) be an IS*O function and (Y, 12) be an IS*-L. Then
(X, t1) Is an intuitionistic lindelof.

Proof. Let (Y, 12) be an IS *—L and {D.} be an intuitionistic open cover for ( X, t1). Then
{f(D,)} is an 1S*-OC for (Y, 1,). Since (Y, 12) is 1S*-L, {f(D,)} contains a countable
subcover say, {f(Du)}. Then {f(D..)} is a countable subcover for (X, t1). Thus (X, 1) is an

intuitionistic lindelof.

5 CONCLUSION

The different qualities of intuitionistic semi * connectedness and compactness are covered in
this article. We will continue to investigate different concepts, such as maximal and minimal

open sets, separation axioms in 1IS*O sets.
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