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Abstract

The initial drought, plants develop a memory that results in partial stomatal opening during the
watered recovery interval, increased levels of osmoprotectants and abscisic acid (ABA), and a
dampened photosynthesis response during the subsequent drought. This short-term memory is
regulated by ABA and other phytohormones, with transcriptional memory observed in various
genes through the deposition of methylated histones at drought-tolerance genes. RNA
polymerase activity is stalled during the recovery interval, ready to be activated promptly in
the subsequent drought by a pause-breaking factor. Drought stress also induces DNA
demethylation near drought-response genes, indicating a genetic control of the process.
Progenies of drought-exposed plants inherit specific methylation patterns, which enhances
their adaptation to drought conditions. However, an extended watered recovery interval can
lead to the loss of drought memory, facilitated by certain demethylases and chromatin
accessibility factors. Small RNAs play a crucial role in regulating drought memory by
modulating transcript levels of drought-responsive target genes. Future research is expected to
delve further into the genetic regulation of drought memory and explore the interplay between
genetic and epigenetic factors in its inheritance. Studying plants from extreme environments

can provide valuable insights into robust memory responses at the ecosystem level.
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Introduction:

By the year 2050, the world's population is expected to reach nearly 10 billion, posing a
significant challenge to agricultural production in meeting the growing food demand. Global

warming, increased frequencies of drought [1], and desertification further exacerbate the issue
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[2]. Drought stress adversely affects nutrient availability and makes plants more susceptible to
pests and diseases. Countries like India and the USA already experience significant yield losses

in agriculture due to drought, and these losses are projected to worsen in the future [3].

Plants have evolved various adaptive strategies to survive droughts, including drought
avoidance, endurance, and tolerance mechanisms [4]. While severe drought can lead to plant
damage and even death, short-term moderate droughts may allow for plant recovery upon stress
withdrawal [5]. Plants possess the ability to "remember" past drought events, adjusting their
physiology to respond more effectively to subsequent droughts [6]. This adaptive process,

known as priming, memory, and acclimation, enables plants to enhance their resilience.

Figure 1 illustrates the different types of drought memory in plants. Plants can remember
exposure to drought for several days to weeks through changes in their transcriptomic and
metabolomic profiles [7]. This short-term memory results in the accumulation of specific
signaling molecules, such as transcription factors, which are activated upon subsequent stress
exposure [8]. These molecular changes lead to physiological responses like partial stomatal

closure and reduced photosynthesis as preparatory measures for the next drought [9] .

Epigenetic regulation of chromatin plays a crucial role in both short-term and transgenerational
drought memories[10]. It allows for the passage of memory to future generations through germ
cells developing during drought exposure [11]. Understanding the molecular mechanisms of
plant drought memory is essential for crop improvement and enhancing resilience to climate

change [12].

While plants lack a centralized brain like higher animals, they possess the capacity for
memorization, a fundamental aspect of adaptive evolution [13]. Ongoing research in this area
will help fill gaps in our understanding of plant drought memory and pave the way for

innovative applications in crop improvement [14].
Transcriptional memory of plants:

Transcriptional memory of drought in plants refers to their ability to retain a memory of past
drought events at the transcriptional level [15]. After exposure to drought stress, plants undergo
changes in gene expression that persist even after the stress is alleviated [16]. This memory
allows plants to respond more effectively to subsequent drought exposures [17], with quicker

and more robust defense mechanisms [18]. The memory is regulated by specific genes,
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transcription factors, and signaling pathways, and it can be passed on to future generations
through epigenetic modifications [19]. Understanding this process has significant implications

for crop improvement and breeding programs to develop more drought-tolerant varieties and

ensure food security in the face of climate change [20].
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Fig.1 Drought memory in plants. Severe drought may kill a plant,
but a mild drought or a drought for a short duration can trigger short-
term memory, usually established by transcriptional training or meta-
bolic reprogramming, leading to survival under a subsequent drought.
Sometimes, the memory may be reset or erased upon a prolonged
watered recovery interval, leading to drought sensitivity in the sub-
sequent exposure. The memory of stressed plants is carried over to
the next generation, termed transgenerational memory, which is usu-
ally attributed to epigenetic changes like DNA methylations. The per-
sistence of memory in two or more generations is intergenerational
memory
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Fig.3 Maintenance of DNA methylation for droughl memory.
Drought (D1) causes demethylation in most plants’ CG and CHH
sequence contexts, but in the CG and CHG sequences in Boea hygro
metrica. The change in methylation status in the promoter of protein
coding genes leads 1o their activation causing drought tolerance. A
second drought (D2) does not change the methylation status further,
which is mamtained. The methylation patierns of stressed planis are
inherited 10 the next generation (S1) through the maternal parent. No
further change in methylation is observed. and this status is inber

iled by the second generation of stressed (52) or non-stressed plants
(S1C1). On the other hand, the hypermethylated status of control
non-stressed plants of the starting generation is transmitted o sub-
sequent generations C1 and C2. Methylation levels of S1. S2 and
S1C1 planis are lower than the coatrol C1 and C2 plants. The role of
siIRNA-medisted methylation in the CHH context through the RNA
directed DNA methylation pathway is important for the transgeners
tional drought memory

Conclusion:

Transcriptional memory of drought in plants refers to their ability to retain a memory of past

drought events at the transcriptional level. After exposure to drought stress, plants undergo

changes in gene expression that persist even after the stress is alleviated. This memory allows

plants to respond more effectively to subsequent drought exposures, with quicker and more

robust defense mechanisms.
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