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Abstract. In the present paper a non-perturbative approximate analytic solution is derived for the fractional Riccati type 

equation by using Adomian Decomposition Method (ADM). The decomposition series solution is very rapidly 

convergent, and only a few terms of the series solution leads to a very good approximation with the actual solution of the 

problem. The present method performs extremely well in terms of accuracy, efficiency and simplicity. 
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INTRODUCTION 
 

Recently a great deal of interest has been focused on Adomian’s Decomposition Method (ADM) and its 

applications to wide class of physical problems containing fractional derivatives [5,6,11,12,13]. The decomposition 

method employed here is adequately discussed in the published literature [3,4,16], but it still deserves emphasis to 

point out the very significant advantages over other methods. The said method can also be an effective procedure for 

the solution of fractional Riccati type equation. 

The fractional differential equations have been used to model problems in Physics [2,9], Fluid Mechanics 

[17,18] and wave propagation phenomena [7,8]. In mathematics, a Riccati equation is any first order ordinary 

differential equation that is quadratic in the unknown function. In other words, it is an equation of the form 

( )
( ) ( ) ( ) ( ) ( ),2

210 xyxqxyxqxq
dx

xdy
++=  

where ( ) 00 xq and ( ) 02 xq . 

If ( ) 00 xq , the equation reduces to a Bernoulli equation, while if ( ) 02 =xq , the equation becomes a first 

order linear ordinary differential equation. The equation is named after Count Jacopo Francesco Riccati           

(1676- 1754). More generally, the term “Riccati equation” is used to refer to matrix equations with an analogous 

quadratic term, which occur in both continuous-time and discrete-time linear quadratic-Gaussian control. The 

steady-state (non dynamic) version of these is referred to as the algebraic Riccati equation. 

The Riccati type equation is one of the basic equations in theoretical physics and has been the focus of many 

studies. In the present paper we implemented the ADM to the fractional Riccati type equation which is given by 

( )
( ) ( ),2

2
1

2
1

xxyxxy
dx

xyd
+−=                                                                                                                            (1) 

where
2

1

2
1

dx

d
 is the fractional differential operator of order 

2
1  [1,19]. In these schemes the solution constructed 

in power series with easily computable components. 
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MATHEMATICAL ASPECTS OF FRACTIONAL CALCULUS 
 

Many definitions of fractional calculus are used to solve the problems of fractional differential equations. The 

most frequently encountered definitions include Riemann- Liouville, Caputo, Weyl and Riesz fractional operator. 

We introduce the following definitions [1,2]. 

 

DEFINITION 
 

Let
+R .The integral operator

I defined on the usual Lebesgue space L (a, b)
 
by 

( ) ( )
( )

( ) ( ) ,
1

1

0

dttftxxf
dx

d
xfI

x −

−

−

 −


==








    
                                                                                     (2)

 

for bxa  ,is called Riemann-Liouville fractional integral operator of order 0 . 
 

DEFINITION 
 

The Riemann-Liouville definition of fractional order derivative is 

( ) ( )
( )

( ) ( )
−−

−
−

==

x
m

m

m

dttftx
dx

d

m
xf

dx

d
xfD

0

11 







,                                                                     (3) 

where m is an integer that satisfies mm − 1 .  

 

DEFINITION 
 

A modified fractional differential operator
D proposed by Caputo is given by 

( ) ( )
( )

( ) ( )
−−

−
−

==

x

mm
dttftx

m
xf

dx

d
xfD

0

11 







,                                                                     (4) 

Where 
+R , is the order of operation and m is an integer that satisfies mm − 1 .  

 

ANALYSIS OF THE METHOD 
 

We consider the fractional Riccati type differential eq. (1), where 
2

1

2
1

dx

d
 is the Riemann-Liouville differential 

operator of order 
2

1 . In the standard form used in the ADM, the eq. (1) is rewritten as  

( ) ( ) ( ) ,02
1

=−+ xxNyxxyxyD                                                                                                                     (5) 

where the operator 
2

1

2
1

2
1

dx

d
D   and the nonlinear function ( ) ( )xyxNy 2= .  

Now, we have 

( ) ( ) ( ),2
1

xxNyxxyxyD +−=                                                                                                                           (6) 

Operating with the integral operator
2

1

2
1

−

−

dx

d
, we have 
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dx
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−

−

−

+−=                                                                                                 (7) 

where c  is an arbitrary constant. 

Following the analysis of ADM [3,4], we expect the decomposition of the solution into a sum of components to 

be defined by the decomposition series 

( ) ( )


=

=
0n

n xyxy                                                                                                                                                    (8) 

and the nonlinear term ( )xNy is replaced by 


=0n

nA , where nA are a set of Adomian’s special polynomials 

[11,19]. Hence, we can write  
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Now assuming the nonlinear function ( )xNy is analytic, these nA polynomials can be calculated for all forms of 

non-linearity according to specific algorithms constructed in [3,4,10]. These nA polynomials depend, of course, on 

the particular non-linearity. For the present problem, we have [3,4] 

( ) ( )xyxNyA
n

n

2

0

==


=

                                                                                                                               (10) 

It follows that 

( )xyA
2

00 =  

( ) ( )xyxyA 101 2=  

( ) ( ) ( )xyxyxyA 20

2

12 2+=  

( ) ( ) ( ) ( )xyxyxyxyA 30213 22 +=  

and so on.                                                                                                                                                                    (11) 

Using the nA polynomials and identifying the zero component ( )xy0 by
x

c
, the remaining components, where

0n , can be determined by using the following recurrence relation [3,4]: 

( ) ( )   nnn xADxxyDxy 2
1

2
1

1

−−

+ +−= , 0n .                                                                                           (12) 

Consequently, we find that 
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and so on.                                                                                                                                                                    (13) 

Therefore, all components of ( )xy are calculable and from (8), the solution is completely determined. The 

expression ( ) ( )
−

=

=
1

0

n

i

in xyx  is the −n term approximation to ( )xy . Here it is to be noted that, the decomposition 

series solution is very rapidly convergent [4, 5, 6, 13], and only a few terms of the series solution leads to a very 

good approximation with the actual solution of the problem. Generally, only a few terms are sufficient for most 

purpose and we can proceed further with little effort [5,6,10,13]. We consider ( )x5 , i.e., five-term approximation, 

the solution is given by 
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VERIFICATION BY THE POWER SERIES METHOD 
 

In view of the fractional differential eq. (1), we can take the solution in the form of the following fractional 

power series 

( ) .
0

2
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+=
n

n

n xa
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xy                       (15) 

  Substituting this expansion (15) into eq. (1) we obtain 
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By equating the co-efficient of different powers of , we obtain 

,00 =a  

x
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The rest of the terms can be calculated in a similar manner. Therefore, the solution of eq. (1) is  
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Retaining up to the terms of the order 
4x .The series (18) is in complete agreement with that of (14). It follows 

immediately that the accuracy of the solution can be improved by computing more terms in the decomposition 

method. This is due to the rapid convergences of the decomposition solution [4,5,6,13]. The above results may be 

compared obtained in [20]. 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES  

 

                                  ISSN PRINT 2319 1775 Online 2320 7876  
 
Research paper© 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11,Iss 12 , 2022 

 

18763 

 

 
 

CONCLUSION 
 

The present problem deals with the solution of Riccati type fractional differential equation with the help of 

ADM. The solution obtained by this method is verified with that of Power Series Method and the solutions obtained 

by both these methods are found to be in complete agreement justifying the concept of ADM. The advantages of this 

global methodology lies in the fact that it not only leads to an analytical continuous approximation which is very 

rapidly convergent [4, 5, 6, 13] but also shows the dependence, giving insight into the character and behavior of the 

solution just as in a closed form solution [4, 6, 11].  

The present analysis exhibits the applicability of the decomposition method to solve a non-linear fractional 

differential equation. Furthermore, this method does not require any transformation techniques, linearization or 

discretization of the variables and it does not make closure approximation or smallness assumption. This technique 

may be applied to the nonlinear partial differential equations such as KdV (Korteweg-De Vries) equation, nonlinear 

Schrödinger equation and Barger’s equation. 
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