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Abstract

This study focuses on the numerical solution of a challenging differential-difference equation within
a dual boundary layer domain, employing an innovative fitted method. The equation is initially
transformed into an ordinary singularly perturbed problem through a Taylor series expansion
procedure. Subsequently, a three-term scheme is developed using finite differences, and the
resulting tridiagonal system of equations is efficiently solved using the Thomas Algorithm. The
study meticulously analyzes the accuracy of the solution by tabulating maximum absolute errors
and employs graphical representations to illustrate the influence of fitting parameters on the layer
structure. The research not only provides a practical numerical solution for complex problems but
also contributes valuable insights into parameter sensitivity, facilitating precise adjustments for real-
world applications. Additionally, the study advances the understanding of mathematical techniques,
showcasing their adaptability in solving intricate problems encountered across various disciplines.

Key words: Singular Perturbation, Differential-Difference Equations, Dual Layer, Positive
shift, Negative Shift.

1. Introduction

In the realm of control systems, the ubiquitous presence of time delays cannot be
overlooked, stemming from the finite duration required for information sensing and subsequent
response. This inherent characteristic leads to the formulation of singularly perturbed differential-
difference equations (SPDDEs). These equations, where ordinary differential equations feature a
small positive parameter multiplying the highest derivative and include at least one shift term (delay
or advance), constitute a pivotal area of study in scientific and engineering domains.

The intrigue of SPDDEs lies in their multi-scale nature; they exhibit thin transition layers where
solutions undergo rapid variation, while maintaining stability away from these layers, where
variations occur at a slower pace. This intricate behavior renders SPDDEs fundamental to
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theoretical explorations and practical applications across various fields, including control
theory(M.W. Derstineet al.,1982), physiology(K. Ikeda et al.,1982) and neural networks(M.K.
Kadalbajoo, K.K. Sharma, 2005), among others.

Previous research efforts have delved into the complexities of SPDDEs, utilizing diverse techniques
to unravel their intricate structure. Literature has explored approximate solutions employing
methods such as matched asymptotic expansions and Laplace transforms, facilitating an in-depth
understanding of the layer structures inherent in these differential-difference equations. Researchers
have also proposed innovative numerical integration techniques, ranging from Numerov's difference
scheme to exponential fitted methods, offering robust solutions tailored to specific types of
SPDDEs. Furthermore, advancements in parametric spline schemes and fitted finite difference
methods have expanded the toolkit for addressing nonlinear SPDDEs, providing a comprehensive
approach to deciphering and solving these complex problems.

This introduction sets the stage for a comprehensive exploration of SPDDEs, highlighting their
significance, prevalence in real-world scenarios, and the diverse methodologies employed to
comprehend and solve them. Through this study, we delve into the intricate world of SPDDEs,
aiming to contribute to the existing body of knowledge and enhance our understanding of these
intriguing equations.

2. Description of the method

Consider singularly perturbed differential-difference equation of the form:
g2u"(t) + b(D)u(t — 8) + c(H)u(t) + d(Ou(t +n) = f(t) (1)

vt € (0,1) subject to the interval and boundary conditions

u(t) =@p()on —6<t<0 2
ult) =y(®on 1<t<1+n 3)
where

a(t),b(t),c(t),d(t), f(t), ¢(t) and y(t)are sufficiently smooth functions on (0, 1), 0< e << 1 is
the perturbation parameter and 0 < § = 0(e) and 0 < n = 0(¢) are the delay (negative shift) and
the advance(positive shift) parameters respectively.

By using Taylor’s expansion in the neighbourhood of the point t, we have
u(t —96) = u(t) —ou'(t) 4)
u(t +n) = u(t) +nu'(t) ()

Using Eq. (4) and Eq. (5) in Eg. (1) we get an asymptotically equivalent singularly perturbed
boundary value problem of the form:

e2u(6) + p(Ow(®) + q(Ou() = £(2) ©)
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u(0) = ¢(0) = ¢, (7)
u(l) =y(1) =n (8)
where

p(t) = d(t)n — b(t)é (9)
q(t) = b(t) +c(t) +d(t) (10)

Since 0 < § << 1land 0 < n << 1, The transition from Eq.(1) to Eq.(6) is admissible. Further
details on the validity of this transition is found in El’sgol’ts and Norkin. If ¢g(t) <0 on
the interval [0,1], after that the solution of Eq.(1) exhibits boundary layers at each edges of the
interval [0,1], whereas it exhibits oscillatory behaviour for g(t) > 0. Now, we considered
duallayer problems.

From the theory of singular perturbations, the solution of Egs. (6) -(8) is of the form

tp(t) q(t)
L (EA-L2

p) T30 4 0(e) (11)

u(t) = uy,(x) + @)

(9o —uo(0))e
Where u, (t) is the solution of

PO (1) + q(Oue(8) = F(8), u,(1) =14 (12)

Using the Taylor’s series expansion for p(t) and q(t) about the point ‘t = 0’ and limiting to their
first terms, Eq. (11) becomes,

W) = 1o (0) + (90 — ug (0 U 50) 4 0(e) (13)

on discretizing the interval [0,1] into N equal subintervals of step size Zz = % to make sure that
t;=1ik,i=0,1,2,.... N

From Eq.(13), we have

p(o) q(O))-

U(ih) = ug (ih) + (9o — 1o (0))e L7 7)™ 1 0(e)

Therefore
_(pz(o)—eq (0))ip
limu(izz) = u,(0) + (9o — uo(0))e P(©)
—0
(14)

where p = 2

2

Assuming that u(t) is continuously differentiable in the interval [0,1] and applying Taylor’s series
expansion for u(t;,1) and u(t;_1), we have:
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VE A3 Vi Ve £
_ _ ! " (€)) (5) (6) (8)
u(ti+1)—ui+1 —ui+ﬁui+iui +?ul +Eul + — 5| + — 6! + — 71 8 l
+0(/4 9)
ﬁz A3 nt Ve Yo A7 58
_ _ " (4) %) ) (7) (8)
u(ti_y) =u_q =u; — Au; + — TR T BTy W +aui o7 +— T
- 0(4%)
From the finite differences, we have
24% 4 6 8
ui_l—Zui+ui+1=7ui + ’y ()+ ()+ ()+0(ﬁ10)
Now we have the relation:
242 24 2/° 248
" " " (4) (6) (8) (10) 12
U_q —2u; +Uq = BT +— U +— o Ui +Wui +0(/%7)
Substltutlng (6) from the above equation in Eq.(15), we have
u® " " " 2 (4 A° 248
— 2y +ul+1—/zu + u; +30[ui_1—2ui+ui+1—/z U 30 ]+?+
0(& 10)
A 8
2ul+ul+1—/zz[u +—(ul 1 2u +u+1)] l() 20 i ()+
® 10
?ui + O(ﬁ )
and
2 " " "
(4) 13 (8) 10
Where R— +302400 +0(~2")

Now from the Eq. (6), we have

Uiy = —Pit1Uit1 — Git1Uiv1 + fira

W, = —piu; — qiu; + f;

EUj_q = —Pi—1Ui—1 — Gi—1Wi—1 + fi1

Using the following three-point approximations for first-order derivatives:

’ Uj_1 — 4ul' + 3ui+1
Uiy = Y

U~ Uit — Ui

: 2/
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L R TS
j_y = Bt (18)

Substituting Eq. (17) and Eq.(18) in Eq.(16) and simplifying we get

h? 60/ : : 60/ 60/
qi-1 28q; qdi+1 _ Ufic1428fi+fi 19
30 Yi—1 + 30 Yi + 30 Yi+1 = 30 ( )

i—1—2uU; U, i- 28p; i
€ (M) + B =30y + 4y — uypg] + S0 [ — wiq ]+ B [y — 4y + Bu] +

The tridiagonal system Eq. (19) is given by
Ajuiy — Biu; + CGujy = Dy,
fori=12,... N-1 (20)

where

€ 3pi-1 Qi1 28p;  Diy1
A = — — _
Ya? 604 T30 " 604 607
o E _ 4p;_1 _ 28¢q; " 4p;iv1
YTt 604 30 0 604
€ _Pim1 i 28pi  3pins

G =250 T30 T80% T 602

1
bi=z5 [fi-1 + 28f; + fisd]
We use the Thomas algorithm to solve this tridiagonal system Eq. (20).

3. Numerical examples

The proposed method is validated on examples of the similar type of Egs. (1)- (3). For the
singularly perturbed differential-difference equation:

2u” (x) + b()ulx — 8) + cu(x) +d(x)ulx +1n) = f(x)
Vx € (0,1) and subject to the interval and boundary conditions
u(x) = p(x), om—6<x<0

u(x) =y), on 1<x<1+n

with constant coefficients(i.e,

b(x) = b,c(x) =c,d(x) =d,f(x) = f,9(x) = ¢ and y(x) =y)
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(1-b—c—-d)e™2—-1]e™1*—[(1—b—c—d)e™1—-1]e™2%

1

(b+ct+d)(e™1—e™2)

(b6 —dn)++y/(dn—b8)2—4e2 (b+c+d)

22

b+c+d

(b8 —dn)—/(dn—bS)2—4&2(b+c+d)
my =

2¢2

Example 1. Consider the SPPDE with constant coefficients
2u (x) = 2u(x—=8) —u() —2u(x+n) =1, k) =1,
The results are shown in Table 1 and 2 & Figure 1 and 2.
Example 2. Consider the SPPDE with constant coefficients

e2u’ (x) + 0.25u(x — 8) —u(x) + 0.25u(x +n) =1, oK) =1,

The results are shown in Table 3 and 4 & Figure 3 and 4.

y(x) =0

y(x) =0

Table 1. In solution of Example 1, the numerical results for N=100, = 0.1 andd = 0.07

X n=20 n = 0.03 n = 0.06
Num. Solution | Exact Solution | Num. Solution | Exact Solution | Num. Solution | Exact Solution
0.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
0.02 0.45242458 0.45264934 0.50300731 0.50344253 0.55169184 0.55214441
0.04 0.15471487 0.15495931 0.21184940 0.21235949 0.27086719 0.27143434
0.06 | -0.00714606 -0.00694668 0.04127762 0.04172600 0.09495586 0.09548892
0.08 | -0.09514776 -0.09500320 -0.05865005 -0.05829970 -0.01523674 -0.01479139
0.10 | -0.14299314 -0.14289488 -0.11719162 -0.11693498 -0.08426247 -0.08391365
0.20 | -0.19729146 -0.19728211 -0.19428558 -0.19425011 -0.18883735 -0.18876996
0.40 | -0.19998330 -0.19998323 -0.19997011 -0.19996975 -0.19989563 -0.19989436
0.60 | -0.19971798 -0.19971742 -0.19988711 -0.19988642 -0.19996039 -0.19995998
0.80 | -0.19248997 -0.19248250 -0.19525107 -0.19523670 -0.19721989 -0.19720588
0.90 | -0.16124429 -0.16122502 -0.16918139 -0.16913482 -0.17641992 -0.17636058
0.92 | -0.14618856 -0.14616716 -0.15520223 -0.15514807 -0.16383885 -0.16376607
0.94 | -0.12528403 -0.12526175 -0.13488218 -0.13482316 -0.14454520 -0.14446151
0.96 | -0.09625855 -0.09623793 -0.10534508 -0.10528788 -0.11495748 -0.11487195
0.98 | -0.05595734 -0.05594302 -0.06241008 -0.06236852 -0.06958335 -0.06951778
1.00 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Maximum Error : 3.0469e-04 1.8305e-04 4.8258e-04

Table 2. In solution of Example 1, the maximum absolute errors for § = €2 and n = 22

e\N

128

256

512

1024

2048

0.1

0.01

3.6651e-04 9.1836e-05 2.2972e-05 5.7438e-06 1.4360e-06
2.1734e-02 7.7833e-03 2.0641e-03 5.2711e-04 1.3272e-04

Table 3. In solution of Example 2, the numerical results for N=100,& = 0.01 andn = 0.007

X 6=0 6 = 0.003 6 = 0.006

Num. Solution | Exact Solution | Num. Solution | Exact Solution | Num. Solution | Exact Solution
0.00 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
0.02 | -1.38767494 -1.39431045 -1.33302029 -1.34238288 -1.27719916 -1.28881467
0.04 | -1.87501934 -1.87771339 -1.85171269 -1.85584657 -1.82585298 -1.83140514
0.06 | -1.97449040 -1.97531076 -1.96703179 -1.96840075 -1.95804213 -1.96003260
0.08 | -1.99479328 -1.99501533 -1.99267029 -1.99307326 -1.98989094 -1.99052526
0.10 | -1.99893726 -1.99899361 -1.99837041 -1.99848162 -1.99756439 -1.99775390
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0.20 | -1.99999962 -1.99999966 -1.99999911 -1.99999923 -1.99999802 -1.99999832
0.40 | -2.00000000 -2.00000000 -2.00000000 -2.00000000 -2.00000000 -2.00000000
0.60 | -2.00000000 -2.00000000 -2.00000000 -2.00000000 -2.00000000 -2.00000000
0.80 | -1.99999110 -1.99999255 -1.99999548 -1.99999621 -1.99999781 -1.99999815
0.90 | -1.99578031 -1.99613909 -1.99699376 -1.99724841 -1.99790619 -1.99807730
0.92 | -1.98553127 -1.98652411 -1.98896875 -1.98972284 -1.99174047 -1.99228502
0.94 | -1.95038873 -1.95296451 -1.95952135 -1.96161494 -1.96741828 -1.96904301
0.96 | -1.82988986 -1.83583000 -1.85146549 -1.85663224 -1.87147350 -1.87578258
0.98 | -1.41671595 -1.42699041 -1.45495961 -1.46452309 -1.49299605 -1.50156761
1.00 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
Maximum Error : 1.0274e-02 9.9633e-03 1.1880e-02
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Table 4. In solution of Example 2, the maximum absolute errors for § = € and 5 = 2&?

e\N

128

256

512

1024

2048

0.1
0.01

8.2492e-05 2.0630e-05 5.1581e-06 1.2896e-06 3.2239e-07
8.0762e-03 2.0682e-03 5.2272e-04 1.3088e-04 3.2750e-05

Numerical Solution

n=0
.......... =003
—— —7=0.06

Fig. 1. Numerical solution of Example 1 for N=100,&£=0.1and § = 0.07
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Fig. 3. Numerical solution of Example 2 for N=100,&c=0.1,and § = 0.07
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Fig. 4. Numerical Solution of Example 2 for N=100, £ = 0.01,and 1 = 0.007
4. Discussions and conclusion

This study has introduced and applied a tailored fitted method for solving singularly
perturbed differential-difference equations displaying dual-layer behavior. Through a series of
model problems involving variations in parameters such as g, §, 1, and h, we systematically
evaluated the performance of our method. By presenting the maximum absolute errors and
computational orders for well-established examples from the literature, we conducted a
comprehensive analysis. The comparison between our numerical solutions and exact solutions
validated the accuracy and reliability of our proposed approach. The results unequivocally show
that our method excels in approximating exact solutions, affirming its robustness and
effectiveness in dealing with the intricacies of singularly perturbed differential-difference
equations featuring dual-layer phenomena. This study underscores the practical applicability
and potential of the fitted method in accurately capturing the behavior of complex systems
governed by such equations.
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