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ABSTRACT: 

Turing patterns can be observed in reaction-diffusion systems where chemical species have 

different diffusion constants. In recent years, several studies investigated the effects of noise 

on Turing patterns and showed that the parameter regimes, for which stochastic Turing 

patterns are observed, can be larger than the parameter regimes predicted by deterministic 

models, which are written in terms of partial differential equations for species concentrations. 

A common stochastic reaction-diffusion approach is written in terms of compartment-based 

(lattice-based) models, where the domain of interest is divided into artificial compartments 

and the number of molecules in each compartment is simulated. In this paper, the dependence 

of stochastic Turing patterns on the compartment size is investigated. It has previously been 

shown (for relatively simpler systems) that a modeller should not choose compartment sizes 

which are too small or too large, and that the optimal compartment size depends on the 

diffusion constant. Taking these results into account, we propose and study a compartment-

based model of Turing patterns where each chemical species is described using a different set 

of compartments. It is shown that the parameter regions where spatial patterns form are 

different from the regions obtained by classical deterministic PDE-based models, but they are 

also different from the results obtained for the stochastic reaction-diffusion models which use 

a single set of compartments for all chemical species. In particular, it is argued that some 

previously reported results on the effect of noise on Turing patterns in biological systems 

need to be reinterpreted.  

Keywords: stochastic Turing patterns · 

compartment-based models 

1 INTRODUCTION 

 In his pioneering work, Alan Turing [42] 

showed that stable spatial patterns can 

develop in reaction-diffusion systems 

which include chemical species 

(morphogens) with different diffusion 

constants. Considering a system of two 

chemical species with concentrations u(x, 

t) and v(x, t) in one-dimensional interval x 

∈ [0, L], the underlying deterministic 

model of Turing patterns can be written as 

a system of two reaction-diffusion partial 

differential equations (PDEs) 

 

where Du and Dv are diffusion constants 

of morphogens u and v, respectively, and 

f1(u, v) and f2(u, v) describe chemical 

reactions. Then the standard analysis 

proceeds as follows [35, 38]: a 

homogeneous steady state u(x, t) ≡ us, v(x, 

t) ≡ vs is found by solving f1(us, vs) = 0 

and f2(us, vs) = 0. It is shown that the 

homogenous steady state is stable when 

Du = Dv, and conditions on f1, f2, Du and 

Dv are obtained which guarantee that the 

homogeneous steady state will become 
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unstable for Du 6= Dv. Then Turing 

patterns are observed at the steady state. 

The above argument was extensively 

analysed in the mathematical biology 

literature and conditions for Turing 

patterns have been determined [35, 38]. 

Experimental studies with chemical 

systems (chlorite-iodide-malonic acid 

reaction) demonstrated Turing type 

patterns [30, 37]. There has also been 

experimental evidence that a simple Turing 

patterning mechanism can appear in 

developmental biology, for example, in the 

regulation of hair follicle patterning in 

developing murine skin [41]. One of the 

criticism of Turing patters is their lack of 

robustness [33]. The PDE system (1.1)–

(1.2) can have several stable non-

homogeneous solutions which the system 

can achieve with relatively small 

perturbations to the initial condition. 

Considering PDEs in a suitably growing 

domain, one can obtain an additional 

constraint on the system which restricts the 

set of accessible patterns, increasing the 

robustness of pattern generation with 

respect to the initial conditions [8, 2]. 

However, to assess the sensitivity of 

patterns with respect to fluctuations, 

stochastic models have to be considered 

[33, 5]. 

One of the most common approaches to 

stochastic reaction-diffusion modelling is 

formulated in the compartment-based 

(lattice-based) framework [12]. In the one-

dimensional setting, the compartment-

based analogue of the PDE model (1.1)–

(1.2) can be formulated as follows: The 

computational domain [0, L] is divided 

into K compartments of length h = L/K. 

We denote the number of molecules of 

chemical species U (resp. V ) in the i-th 

compartment ((i − 1)h, ih) by Ui (resp. Vi), 

i = 1, 2, . . . , K. Then the diffusion of U 

and V is described by the following chains 

of “chemical reactions” [12]: 

 

 

Fig. 1 Turing patterns for the stochastic 

reaction-diffusion system (1.3), (1.4) and 

(1.6). (a) Numbers of molecules of 

chemical species U in each compartment at 

time 18; (b) the same plot for chemical 

species V . The initial condition was the 

homogeneous steady state Ust = 200 and 

Vst = 75 for the parameters given in the 

text. The values of Ust and Vst are denoted 

by dashed lines. Adapted from [12] with 

permission. 

 

Reactions are localized to each 

compartment. For example, considering 

the commonly studied Schnakenberg 

reaction system [39], chemical reactions in 

the i-th compartment are described by 

[36]: 

 

The above formulation (1.3), (1.4) and 

(1.6) describes the stochastic 

reactiondiffusion model as a system of (8K 

− 4) chemical reactions: we have (K − 1) 

diffusive jumps of U molecules to the left 

(resp. right), (K − 1) diffusive jumps of V 

molecules to the left (resp. right), and 4K 

reactions (1.6). This system can be 

simulated using the Gillespie algorithm 

[21], or its equivalent formulations [7, 20]. 
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In Figure 1, we present an illustrative 

simulation of the reaction-diffusion system 

(1.3), (1.4) and (1.6). We clearly see that 

Turing patterns can be observed for the 

chosen set of dimensionless parameters: k1 

= 4 × 103 , k2 = 2, k3 = 1.2 × 103 , k4 = 

6.25 × 10−8 , Du = 10−3 and Dv = 10−1 . 

Compartment values above (resp. below) 

the homogeneous steady state values Ust = 

200 and Vst = 75 are coloured black (resp. 

light gray) to visualize stochastic Turing 

patterns. Let us note that the rate constants 

k1 and k3 are production rates per unit of 

area. The stochastic model uses the 

production rates per one compartment 

which are given as k1h and k3h, 

respectively. More details of this stochastic 

simulation are given in Section 2 where we 

introduce the corresponding propensity 

functions (2.4)–(2.5). 

 

Fig. 2 (a) Schematic of the uniform 

discretization. (b) Schematic of different 

meshes used for U and V where γ defined 

by (2.6) is equal to 5. 

The compartment-based approach has been 

used for both theoretical analysis and 

computational modelling [40, 22]. The 

regions where stochastic Turing patterns 

can be expected were calculated using the 

linear noise analysis [3, 34, 6]. These 

studies were also generalized to growing 

domains [45, 46], to stochastic reaction-

diffusion models with delays [47], to non-

local trimolecular reactions [4] and to 

stochastic Turing patterns on a network 

[1]. Compartmentbased software packages 

were developed [22] and applied to 

modelling biological systems [14]. 

Computational approaches were also 

generalized to nonregular compartments 

(lattices) and complex geometries [9, 28]. 

Stochastic simulations of Turing patterns 

[43, 19, 25] and excitable media [44] were 

also presented in the literature. However, 

these theoretical and computational studies 

use the same discretization for each 

chemical species. In this paper, we will 

demonstrate that, in the case of Turing 

patterns, this simplifying assumption can 

undesirably bias the obtained theoretical 

and computational results. 

One of the assumption of the 

compartment-based modelling is that 

compartments are small enough so that 

they can be assumed well-mixed. In 

particular, the relative size of diffusion and 

reaction constants determine the 

appropriate size of the compartment [11, 

27, 24]. It can be shown that there exists a 

limitation on the compartment size from 

below whenever the reaction-diffusion 

system includes a bimolecular reaction 

[11, 27, 24]. There are also bounds on the 

compartment size from above [29,26], 

again the diffusion constant plays an 

important role in these estimates. In the 

case of Turing patterns, we have chemical 

species with different diffusion constants. 

For example, in the illustrative simulation 

in Figure 1, we have Dv/Du = 100, i.e. the 

diffusion constant of V is 100-times larger 

than the diffusion constant of U. However, 

we used the same discretization for both U 

and V which is schematically denoted in 

Figure 2(a). If we take into account that V 

diffuses much faster, then one could also 

consider the discretization in Figure 2(b) 

where one compartment in the V variable 

corresponds to several compartments in 

the U variable. In this paper, we will study 

differences between discretizations in 

Figure 2(a) and Figure 2(b). We will show 

that these discretizations lead to different 

parameter regimes for stochastic Turing 

patterns. 
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The paper is organized as follows. In 

Section 2 we introduce and analyse a 

simple test problem which will be used to 

illustrate our results. It will be based on the 

above model (1.3), (1.4) and (1.6). In 

Section 3 we analyse both types of 

discretizations, considering a simple two-

compartment discretization in U. 

Illustrative numerical results are presented 

in Section 4. We conclude this paper with 

the discussion of our results in Section 5. 

2 DETERMINISTIC AND 

STOCHASTIC MODELS OF AN 

ILLUSTRATIVE REACTION-

DIFFUSION SYSTEM  

We will consider a simple one-dimensional 

Schnakenberg model (1.6) where the 

reaction rate constants are given by [36] 

 

and ω is a scale factor. We used ω = 4 × 

103 in the illustrative simulation in Figure 

1. When there is no diffusion involved, the 

dynamics of this system can be represented 

as the system of reaction rate ordinary 

differential equations (ODEs) 

 

which has a unique stable steady state at us 

= 2ω and vs = 3ω/4. When we consider 

diffusion, the reaction-diffusion PDEs 

(1.1)–(1.2) are given by 

 

We are implicitly assuming homogeneous 

Neumann boundary conditions (zeroflux) 

in the whole paper, but both the PDE 

model (2.2)–(2.3) and its stochastic 

counterparts could also be generalized to 

different types of boundary conditions 

[10]. Using standard analysis of Turing 

instabilities [36, 35], one can show that the 

Turing patterns are obtained for Dv > 

39.6Du for the parameter values (2.1). 

This condition is independent of ω. The 

illustrative simulation in Figure 1 was 

computed for Dv/Du = 100, i.e. the 

condition for (deterministic, mean-field) 

Turing patterns was satisfied. 

When we are concerned with the stochastic 

effects, the reaction-diffusion system can 

be simulated by the Gillespie stochastic 

simulation algorithm with the one-

dimensional computational domain [0, L] 

discretized. Considering uniform 

discretization in Figure 2(a), the stochastic 

model is given as a set of “chemical 

reactions” (1.3), (1.4) and (1.6). Denoting 

the compartment length by h, we have the 

following propensity functions in the i-th 

compartment [21, 36]: 

 

 

where du and dv are given by (1.5). The 

first four propensities (2.4) are for the four 

chemical reactions in (1.6). The 

propensities (2.5) are for the diffusive 

jumps (left and right) for U (indices 5 and 

6) and V (indices 7 and 8) which 

correspond to (1.3) and (1.4), respectively. 

In the illustrative simulation in Figure 1, 

we divided interval [0, 1] into K = 40 

compartments, i.e. h = 1/40 = 0.025. In 

particular, the production rate of U 

molecules in one compartment was equal 

to α1 = k1h = ωh = 100. The homogeneous 

steady state in compartments corresponded 

to values Ust = ush = 2ωh = 200 and Vst = 

vsh = 3hω/4 = 75. 

2.1 Formulation of the generalized 

comparment-based model  
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The compartmentalization in Figure 2(b) 

generalizes (1.3) and (1.4) to the case 

where different discretizations are used for 

U and V . We will denote by Ku (resp. Kv) 

the number of compartments in the U 

(resp. V ) variable. We define the 

compartment lengths by 

 

where γ is the ratio of compartment sizes 

in the V and U variable. In what follows, 

we will consider that γ is an integer. For 

example, a schematic diagram in Figure 

2(b) used γ = 5. Then the diffusion model 

is formulated as follows 

 

In the standard comparment-based model 

(1.3) and (1.4), we have γ = 1. One option 

to choose γ in the generalized model (2.7) 

and (2.8) is to ensure that du = dv which 

implies 

 

Then the jump rates du and dv from the 

corresponding compartments are equal for 

molecules of U and V . However, we will 

not restrict to the case (2.10) and consider 

general choices of γ in this paper. The 

generalization of the first three 

propensities in (2.4) is straightforward. 

Propensities α1 and α2 in (2.4) correspond 

to chemical species U and we have the 

following propensities in the i-th 

compartment, i = 1, 2, . . . , Ku: α1 = k1hu 

and α2 = k2Ui . The propensity α3 in (2.4) 

is considered in the j-th compartment 

corresponding to the V 

 

Fig. 3 Turing patterns computed by the 

generalized compartment-based model 

(2.7)–(2.11). (a) Numbers of molecules of 

chemical species U in each compartment at 

time 18; (b) the same plot for chemical 

species V . The initial condition was the 

homogeneous steady state Ust = 200 and 

Vst = 750 for the parameters given in the 

text. The values of Ust and Vst are denoted 

by dashed lines. 

species, i.e. in the compartment (j − 1)hv, 

jhv  . It is given as α3 = k3hv. To 

generalize α4, we have to consider the 

occurrences of the trimolecular reaction 

 

in every small compartment in 

discretization of the U variable. In the i-th 

compartment, the propensity function α4 is 

 

where Vj corresponds to the j-th 

compartment in the V variable to which 

the i-th compartment belongs, i.e 

 

. The main idea of the compartment-based 

model is that the molecules of V are 

considered to be well-mixed in the 

compartments of the size hv. Thus the 

propensity function (2.11) correctly 

generalizes the propensity of trimolecular 

reaction α4 in the smaller compartment of 

length. 

. In Figure 3, we present an illustrative 

simulation of the generalized 
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compartment-based model (2.7)–(2.11). 

We use the same parameters as in Figure 1 

to enable direct comparisons, i.e. k1, k2, 

k3, k4 are given by (2.1) where the scale 

factor ω = 4 × 103 . We use (2.10) to select 

the value of γ. Since Du = 10−3 and Dv = 

10−1 , the formula (2.10) implies γ = 10. 

We use the same number of compartments 

for U variable as in Figure 1: Ku = 40. 

Using γ = 10, we obtain that V is 

discretized into Kv = 4 compartments. In 

Figure 3, we see that the Turing pattern 

can still be clearly observed. As in Figure 

1, compartment values above (resp. below) 

the homogeneous steady state values Ust = 

200 and Vst = 75γ = 750 are coloured 

black (resp. light gray) to visualize 

stochastic Turing patter. 

The generalized compartment-based model 

(2.7) and (2.8) can be used to construct 

computational approaches to speed-up 

simulations of the standard compartment-

based model, because it does not simulate 

all diffusion events for chemical species 

with large diffusion constants [31, 32]. For 

example, the illustrative simulation in 

Figure 3 simulates ten times less 

compartments for V and is less 

computationaly intensive than the original 

simulation in Figure 1. However, in this 

work, we are interested in a different 

question than discussing different 

numerical errors with different 

discretization strategies. We will 

investigate the Turing pattern formation 

under different discretizations. We will 

argue that the classical compartment-based 

approach is not the best starting point to 

analyse noise in systems which have 

chemical species with different diffusion 

constants. This conclusion can be already 

demonstrated if we consider a simple two-

compartment model as we will see in the 

next section. 

3 ANALYSIS OF COMPARTMENT-

BASED MODELS FOR KU = 2  

We will consider that the domain [0, L] is 

divided into two compartments in the U 

variable, i.e. Ku = 2. Then we have two 

possible options for the discretization of 

the quickly diffusing chemical species V :  

(i) γ = 1 which corresponds to the classical 

compartment-based model where Kv = 2;  

(ii) γ = 2 which corresponds to the 

generalized compartment-based model 

where Kv = 1. 

We will start with the latter case which 

includes three variables U1, U2 and V1 

and is easier to analyse. In Section 3.2 we 

compare our results with the classical 

compartment-based approach. 

3.1 Generalized compartment-based 

model: Ku = 2 and Kv = 1 

 We consider the case where the whole 

interval [0, L] is divided into two 

compartments for U and one compartment 

for V . The discretization is illustrated in 

Figure 4(a). We will denote by u1, u2 and 

v1 the average numbers of molecules of 

U1, U2 and V1 as predicted by the 

corresponding mean-field 

 

Fig. 4 (a) Generalized compartment-based 

model for Ku = 2 and Kv = 1: The interval 

is divided into two compartments for U 

and remains as one compartment for V . 

(b) Classical compartment-based model: 

The interval is divided into two 

compartments for both U and V . 

model. They satisfy the following system 

of three ODEs [12] 
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We will study the stability of its steady 

states. In order to find the steady state, we 

let the left hand side terms be zero. The 

corresponding algebraic equations can be 

written in the following form: 

 

where we used hu = L/Ku = L/2 and hv = 

L/Kv = L. Adding all three equations we 

have 

 

where we used the parameter choice (2.1). 

Let u1 = (1 + r)ωL and u2 = (1 − r)ωL. 

Solving (3.6) for v1, we obtain 

 

Substituting (3.8) back to (3.4), we have 

 

Using the parameter choice (2.1), we can 

simplify it to 

 

 

Fig. 5 (a) The time evolution of U1 

computed for the generalized 

compartment-based model with Ku = 2 

and Kv = 1. The homogeneous steady state 

u 2 s = 500 is plotted using the dashed line. 

(b) The time-dependent pattern given by 

the values of U1 and U2 computed for the 

same realization of the Gillespie algorithm 

as in the panel (a) 

The system will have a non-homogeneous 

solution u1 6= u2 if and only if the 

equation (3.9) has a non-zero solution, and 

that requires 2du < 1. Using (2.9) and hu = 

L/2, we obtain. 

 

If this condition is satisfied than the 

system has two non-nonhomogeneous 

steady-state solutions 

 

 

In Figure 5, we illustrate this result. We 

use L = 1, Du = 0.1 and ω = 500. Then r = 

0.27 and the steady state values of u1 

(resp. u2 are): 

 

In Figure 5(a), we present the time 

evolution of U1 computed by the Gillespie 

algorithm. We initialize the system at the 

steady state [U1(0), U2(0), V1(0)] = [634, 

366, 350]. We clearly see that the system is 

capable of switching between this state and 

the second non-homogeneous state. In 

Figure 5(b), we visualize the 

corresponding time-dependent pattern. As 

in Figures 1 and 3, we plot the values 

which are larger than the homogeneous 

steady state u 2 s = 500 in black. Light 

gray colour denotes the values which are 

lower than u 2 s = 500. We plot both U1 

and U2 values in Figure 5(b) to visualize 

the resulting pattern. 
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4 COMPARISON OF 

COMPARTMENT-BASED MODELS 

FOR KU > 2  

The condition (3.10) for the generalized 

compartment-based model is only a 

necessary condition for the condition 

(3.26) for the classical case as we showed 

in Figure 6. The bistability condition 

difference suggests that, if we use different 

discretizations for U and V , the stability of 

the homogeneous system may change. In 

this section, we compare the generalized 

and classical compartmentbased models 

for Ku > 2. In Figure 8, we use Du = 5 × 

10−4 and Dv = 20Du. In this case the 

condition for (deterministic) Turing 

patterns (3.29) is not satisfied. The 

classical compartment-based model also 

does not show Turing patterns as it is 

demonstrated in Figure 8(a) (with Ku = Kv 

= 64 compartments) and Figure 8(b) (with 

Ku = Kv = 8 compartments). In both cases, 

no 

 

Fig. 8 Spatial distribution of U at time T = 

100 for Dv = 20Du, ω = 4096 and Du = 5 

× 10−4 with (a) Ku = Kv = 64; (b) Ku = 

Kv = 8; (c) Ku = 64 and Kv = 8; (d) Ku = 

32 and Kv = 8. There is no Turing pattern 

in the top panels (classical 

compartmentbased model). Turing patterns 

appear in the bottom panels (generalized 

compartment-based model). 

spatial Turing pattern is observed except 

noise from stochastic effect. However, if 

the generalized compartment-based model 

is used, then the Turing pattern may 

appear. In Figure 8(c), a result for the 

generalized compartment-based model 

with Ku = 64 and Kv = 8 is presented. 

There is a clear Turing pattern. In Figure 

8(c), we have γ = 8. We also tested cases 

when γ = 2 and γ = 4 and obtained Turing 

patterns. The case γ = 4 is plotted in Figure 

8(d). 

In Figure 9, we demonstrate that both 

discretizations strategies clearly show 

Turing patterns when we increase the ratio 

of diffusion constants to Dv/Du = 80. In 

this case, the condition for (deterministic) 

Turing patterns (3.29) is satisfied. Finally, 

we present results for Dv = 40Du in Figure 

10. In the deterministic PDE system, when 

Dv = 40Du, Turing pattern should still 

appear. But in the classical compartment-

based model, it is hard to claim that there 

is a visible Turing pattern (see Figures 

10(a) and 10(c)). Considering the 

generalized compartment-based model, 

Turing patterns can be clearly observed 

(see Figures 10(b) and 10(d)). 
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Fig. 10 Spatial distribution of U at time T 

= 100 for Dv = 40Du. The generalized 

compartment-based model clearly shows 

Turing patterns, while it is difficult to see 

whether Turing patterns appear in the 

classical compartment-based model. We 

use ω = 4096, Du = 5 × 10−4 with (a) Ku 

= Kv = 32; (b) Ku = 32 and Kv = 8; (C) 

KU = KV = 64; (D) KU = 64 AND KV = 

8. 

5 DISCUSSION  

We showed that two choices of 

compartments illustrated in Figure 2 can 

give different parameter regions for 

stochastic Turing patterns. An obvious 

question is which one is correct. One 

possibility to address this question is to 

consider a more detailed molecular-based 

approach which would be written in the 

form of Brownian dynamics [11]. We are 

currently working on such a simulation 

and we will report our findings in a future 

publication. 

Although our results might look like a 

warning against the use of compartment-

based methods for patterns based on the 

Turing mechanism, there are very good 

reasons to use the compartment-based 

model in other situations [9, 28]. 

Compartment-based models are often less 

computationally intensive than detailed 

Brownian dynamics simulations [16, 23]. 

They can be used for developing efficient 

multiscale methods where parts of the 

domain are simulated using the detailed 

Brownian dynamics while the rest of the 

domain is simulated using compartments 

[13, 17]. They can also be used to bridge 

Brownian dynamics simulations with 

macroscopic PDEs [15], because direct 

multiscale methods for coupling Brownian 

dynamics with PDEs are challenging to 

implement [18]. 

We showed in Figure 9 that the resulting 

patterns are comparable when the ratio of 

diffusion constants is sufficiently large. In 

this case, the generalized compartment-

based model could also be used to 

construct computational approaches to 

speed-up simulations of the standard 

compartment-based model, because it does 

not simulate all diffusion events for 

chemical species with large diffusion 

constants [31, 32]. 
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