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Abstract 

The authors of this study developed a multi-view motion modeled deep attention 

(MV2MDA) method to address the limitations of existing approaches. Most significantly, this 

network can be trained from the ground up using any conceivable backbone structure. The 

data on motion is calculated by Throughout all the layers, attention features derived from 

Lukas kande optical flow are combined with spatial convolutional features. The Four-view 

spatial-temporal fusion features are used in the suggested V2PN, or the Viewer-to-Viewer 

Pooling Network. V2PN generates a view-invariant feature matrix of user-specific attention 

features. The model was a fully retrainable one. To this point uses mF1 score and mRA to 

quantify performance. Despite the fact that the outcomes on our 5 views 200 class sign were 

excellent, datasets in languages. 

1.Introduction  

Human biomechanics place limitations on the range of motion that can be achieved in the 

hands and fingers. Therefore, it is inevitable that identical signs produced by various signers 

or by the same signer on separate occasions will display some degree of difference. The 

visual features of joints and their orientations provided by the hand and fingers to a machine 

interpreter are crucial to a full SLR. Multi-view gesture [1], face [2], and action recognition 

[3] were the primary areas of study for earlier approaches. Very little research has been done 

on multi-view sign language recognition to investigate how different viewpoints affect the 

effectiveness of deep learning systems. Traditional SLR models rely on feature extraction 

techniques developed by hand and automated learning algorithms [4]. Regrettably, computer 

vision algorithms used in hand-crafted features rarely model all the characteristics of a sign 

language in a variety of perspectives. In order to increase the recognition algorithm's real-

time performance, multi-view learning expands the camera's operational freedom in real-

time. To effectively recognize signs, it is crucial to use multi view learning implemented in 

deep networks. The primary results of this section are: 1. a video dataset of 200 signs in five 

different camera views, filmed with five different signers against a variety of backgrounds. 

Our data collection, dubbed KL2DMVSL, contains 5 observations per symbol. To generate a 

maximally discriminative feature vector for recognition, this chapter offers an 8-stream 
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convolutional neural network (CNN) with a motion attention model to extract features in 

various perspectives. 

2. MV2MDA – Net Architecture 

 

Figure 1 depicts the suggested deep learning architecture for sign language recognition across 

many viewpoints. Only four of the eight feature extraction streams in the motion-modelled 

deep attention network (MV2MDA - Net) are spatial, whereas the remaining six are motion 

attention. The probabilities calculated in the SoftMax layer are used to make the final call on 

the assigned class labels. Each incoming video frame has an input size of 256 by 256 by 

3.The issue with recordings depicting human motion (action or sign) is that these motions can 

be interpreted in both subjective and objective ways. 

3.View Pair Pooling Network (VPPN) 

To create an ensemble feature matrix, the VPPN uses the network depicted in fig.3.2 to 

combine the various view-oriented features. Figure 3 depicts a network that was 

conceptualized using GoogleNet's inception layers. To combat the vanishing gradients 

problem, GoogleNet's inception layers expand the network horizontally rather than vertically. 

This led to higher recognition accuracy at the expense of simplified computation. 
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4.conclusion  

For multi-view sign language recognition on the KL2DMVSL 2D video dataset, this chapter 

presents a deep learning approach called MV2MDA. The 8-channel convolutional neural 

network processes data from 4 spatial streams and 4 motion streams across 4 perspectives. 

Every one of the layers is forced to pay more attention to the spatial details thanks to the 

motion streams. To produce features that are independent of the viewpoint, this chapter 

introduces VPPN, a multi-view feature learning network that acquires the skill of pooling. 

Recognizability could be improved by using the learnt pooling procedure to extract view-

specific information. 
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