
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
 ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 07, 2022

4839

TRUE RANDOM NUMBER GENERATOR IMPLEMENTATION IN AN

FPGA-BASED SYSTEM

#1MAVURAPU SWAPNA, Assistant. Professor,

#2KOTICHINTHALA NEETHIKA, Assistant. Professor,

Department of Electronics Communication Engineering,

SREE CHAITANYA INSTITUTE OF TECHNOLOGICAL SCIENCES, KARIMNAGAR, TS.

Abstract: The need for security in industries such as communication, computerized payment systems, and

disk encryption has resulted in the widespread use of cryptographic technologies. Random numbers are used

in a variety of cryptographic applications, ranging from key generation and encryption to masking protocols

and online gambling, to improve and protect the privacy of electronic communications. Predictable random

numbers are a significant flaw in cryptography systems that generate secret keys. TRNGs (true random

number generators) are required for the operation of many different cryptographic systems. These are used

to generate PINs and passwords, authentication tools, keys, random padding, and nonces. Electrical noise, a

type of randomness in electronics, is mostly to blame for the failure. Most of these security measures can be

implemented in hardware using field-programmable gate arrays (FPGAs). The TRNG recommended for

Xilinx-FPGA applications is based on the pulse frequency detection method.

Keywords: True random number generator (TRNG), Cryptography, Field programmable gate arrays

(FPGA), Bit frequency detection (BFD), Dynamic reconfiguration port (DRP).

1. INTRODUCTION

Encryption is now an essential part of keeping our

computers and networks secure. Cryptography is a

secure means of concealing information. It is a

typical component of the security armory used by

a wide range of businesses to protect critical

information. As a result of human connection via

the Internet and other modes of communication,

new security vulnerabilities have evolved.

Cryptography protects information from potential

threats by providing a number of methods for

converting it into an unreadable format. The basic

goal of cryptography is to keep sensitive

information out of the wrong hands. Encrypting

the information contained in data frames

necessitates a specialized implementation strategy.

Another application is to ensure that the sender of

a message always confirms receipt of the data.

Any cryptographic system requires secret

information that is only accessible to authorized

users and cannot be guessed by unauthorized

parties. Random strings are widely used in keys,

salts, nounces, challenges, initialization vectors,

and other one-time amounts to ensure that they

cannot be guessed.

This requires encrypted random number

generators to function properly. A random number

generator is a piece of software that can be used to

produce random numbers. True random number

generators have been in use since the dawn of

time. Dice, cash, a deck of cards, a stalk of

yarrow, and other items appear. IT security

systems employ a variety of approaches and

random number generators. Security can be

jeopardized if the generated random numbers are

not truly random. They must be difficult to crack.

It must include strong security procedures. It must

be distributed evenly within a specified territory

without interfering with one another. This

emphasizes the significance of having a flawless

RNG that meets these conditions. The key to

producing secure encrypted data is to select

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
 ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 07, 2022

4840

random numbers that correspond to the criteria of

cryptographic technologies.

There are two kinds of random number

generators: authentic and fraudulent.

Pseudorandom number generators generate

sequences of numbers that appear to be chosen at

random but actually follow a pattern. True random

number generators generate numbers that do not

cluster or repeat.

True Random Number Generators:

Methods such as (i) oscillator sampling, (ii) direct

amplification, and (iii) discrete time chaos are

widely used. It is feasible to build a low-frequency

clock with a low quality factor (Q) by extracting

samples from a higher-frequency oscillator. As a

result, there will be period fluctuations, often

known as oscillator jitter. Direct amplification

uses an amplifier and a comparator to transform

analog heat or discharge noise into digital signals.

Finally, chaos systems can be used to create

TRNGs.

An LFSR is a mathematical notion that can be

used to generate a PRNG that delivers the same

randomness test results as a good TRNG. The

previous generator's output determines the output

of this one. It has the potential to become the

system's single largest weakness in the vast

majority of scenarios. As a result, as shown in Fig.

1, there are three basic components that comprise

a TRNG. 1.

Fig 1. What You Should Know About TRNG

The noise generator is the "black box" that

generates random sequences. It is based on a wide

range of unpredictable physical phenomena, such

as sound and light propagation over various media

and the impacts of cosmic radiation. The

Randomness Testing section includes several

statistical analyses to establish how random the

outcome is. The Randomness Extraction Box can

be used to extract random bits of information from

the generator's output to make it more uniform.

The final two sections are entirely made up of

mathematical exercises.

Pseudorandom Number Generators:

There are several methods for generating

pseudorandom sequences, some of which are

typical software-based methods that can be

implemented in hardware. A linear feedback shift

register (LFSR) can be produced in a compact

configuration by stacking flip-flops and XOR

gates, making it a frequent component for

constructing pseudo-random number generators

(PRNGs)[11]. It is common practice to generate a

PRNG from the data provided by an LFSR.

Despite this, the LFSR alone is insufficient to

generate good random patterns. When used as a

keystream generator, its linear property aids

decryption. The Berlekamp-Massey algorithm can

evaluate the LFSR output sequence to identify the

connection polynomial. Despite its strong

statistical properties and efficient hardware

implementations, this approach is not suited for

use in cryptography.

Classes of TRNG:

As seen in Figure 1. The two most prevalent types

are random circuit TRNGs and thermal noise

TRNGs.

The thermal noise generator amplifies the noise

produced by electrons traveling through a resistor

and converts it to a random number. Because the

thermal noise level is less than 1mV, this method

is more vulnerable to non-random, data-dependent

digital switching noise in a large SoC. The TRNG,

on the other hand, is more reliable since the white

noise it makes from electrons flowing through a

resistor is truly random.

Fig 2. TRNG Varieties

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
 ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 07, 2022

4841

A chaotic TRNG uses the unpredictable nature of

chaotic oscillators to generate truly random

numbers. We've learnt that chaotic circuits are

utterly unexpected as our understanding of

nonlinear systems has grown. The signal of a

chaotic oscillator can be substantially stronger

than that of a thermal TRNG. The signal-to-noise

ratio (SNR) improves as a result, making the data

more robust. Two circuit approaches that help to

reduce supply and substrate noise include cascade

and the use of an XOR gate to merge unconnected

TRNG outputs (Figure 1). Each TRNG generates

random bits using a different noise source, and

each circuit has its own transfer function from

input to output. This shows that no relationship

exists between the two data streams.

FPGA-based systems outperform microprocessor,

DSP, and VLSI-based systems in terms of

performance, design time, power consumption,

flexibility, cost, and device size. A random

number generator constructed on an FPGA has

numerous cryptography applications. TRNGs

have proliferated throughout the last decade. Tsoi

and Leung, for example, suggested an FPGA-

based TRNG that uses oscillator phase noise as its

seed. For a high-quality random bit stream, they

recommend sampling an accurate high-frequency

clock using an FPGA-gated ring oscillator, some

external resistors, and capacitors. The generator's

fastest output speed is 4.7Kbps, which is

significantly too slow for most cryptographic

applications. The TRNG is partially transparent,

allowing for alterations. Epstein and Hars created

a TRNG based on the observation that digital

circuits are prone to instability. However, the

proposed generator is incompatible with cutting-

edge FPGAs and can only run smoothly on a

limited number of low-cost digital ICs. Because of

the tremendous speed of its CMOS circuitry, there

is virtually no chance of a metastable event

occurring in any of the gates of modern FPGAs.

Many embedded digital systems are shifting away

from traditional computer platforms and toward

programmable devices. Because of their potential

to provide acceptable to high working rates at

much lower prices and significantly faster design

cycle times, reconfigurable systems, such as

FPGAs, are frequently used in cryptography.

Because FPGAs may be programmed to perform a

wide range of algorithms and tasks, they have

long been used to develop cryptographic

algorithms. They are widely used in the sectors of

security and scientific investigation. Field-

programmable gate arrays (FPGAs) provide

higher speed and versatility when compared to

application-specific integrated circuits (ASICs).

Previously, ASICs were extensively used to tackle

cryptography challenges. Because of recent

advancements in reprogrammability, it is now

easier to modify algorithms and write new code

for FPGAs. On an FPGA, developing and

swapping algorithms is faster.

The goal is to improve TRNGs by developing

ones that are totally digital and built on FPGAs. It

is possible to construct TRNG designs that are

both user-friendly and well-suited to the FPGA

design flow using the CAD software tools

available for FPGA design. Random noise can

exist in digital circuitry, albeit it is uncommon.

Along with the metastability of circuit

components and the frequency of free-running

oscillators, oscillations, which are unpredictable

phase shifts in clock signals, are another source of

random noise.

Because of its scalability and speed to market, the

FPGA has become a popular alternative for

designing cryptographic systems that heavily rely

on TRNGs. While FPGAs can implement most

hardware TRNG algorithms, a few are platform-

specific and so cannot be used. Existing FPGA

TRNGs can have their throughput-per-unit-area

improved. Environmental factors such as

temperature and voltage changes can potentially

influence the unpredictability of TRNG output

bitstreams. The FPGA's circuit can undergo

"partial reconfiguration" (PR) during operation,

allowing for changes (typically the addition of

additional functionality). Architects can use DPR

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
 ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 07, 2022

4842

to develop systems with fewer moving

components, smaller hardware footprints, and

lower power needs. DPR enables rapid changes to

the logic fabric of an FPGA without interrupting

normal operation.

Jitter control behavior for Xilinx FPGA-based

applications can be adjusted utilizing the TRNG

circuit implementation's dynamic partial

reconfiguration (DPR) capabilities. With the

appropriate design decisions, bad DPR

manipulations that could damage the system can

be avoided. Setting up a Trojan horse piece of

hardware.

2. BACKGROUND OF PROPOSED

WORK

In this section, we will take a quick look at the

BFDTRNG Model with a single phase.

The BFD-TRNG circuit is a totally digital TRNG

that uses the BFD approach to eliminate jitter. The

first implementation was a 65-nm CMOS ASIC.

3.

Fig 3. Elements critical to the operation of the

BFD-TRNG.

➢ The circuit contains two ring oscillators, A

and B. The building procedures and configuration

possibilities are essentially comparable. Because

of the physical randomness imposed by process

variation effects in deep sub millimeter CMOS

production, one of the oscillators (marked A)

oscillates somewhat faster than the other

(designated B). The authors suggested using

pruning capacitors to improve the precision of the

oscillator's output frequencies.

➢ The D flip-flop (DFF) compares the output

of one oscillator to the output of another. Assume

that the DFF's clock input and D-input are

connected to outputs A and B for the purpose of

clarity.

➢ The difference in frequencies determines

the timing of the signal from the faster oscillator

passing, catching up with, and passing the signal

from the slower oscillator. Due to system noise,

the DFF generates logic-1 at unpredictable

intervals. As a result, capturing events occur at

random intervals known as "beat frequency

intervals."

➢ During beat frequency gaps, the DFF

logic-1 output is used to increment from 0 to 1.

Because jitter can occur at any time, the output of

a free-running counter reaches a distinct high

point at the end of each count-up cycle before

being reset.

➢ As the counter's output increases, a

sampling clock reads it.

➢ The serialized sampled answer generates a

random bit stream.

➢ Due to the construction of the ring

oscillators, the BFD-TRNG circuit has certain

difficulty producing truly random numbers. The

randomness of a TRNG's generated bit stream is

susceptible to manufacturing defects in the ring

oscillators. Despite the fact that both systems had

the same number of inverters, the counter

maximums were distinct.

➢ The following are some potential

techniques to dealing with the aforementioned

FPGA issue.

Random source:

Many FPGAs already have DCM (Digital Clock

Manager) modules installed. Clock-deskew,

frequency generation, and phase shifting are only

a few of the complex clock management tasks

handled by these modules. The DCM can generate

a wide range of clock frequencies needed for

frequency synthesis by multiplying and dividing

an input clock in various ways. Because of the use

of Delay-Locked Loops (DLL) in frequency

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
 ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 07, 2022

4843

synthesis, jitter in the resulting clock time is

unavoidable. According to the Xilinx FPGA data

sheet, if the frequency synthesis parameters are

selected correctly, we can build an output

oscillator with a lot of period jitter that can be

used to generate random numbers.

Randomness extraction from the DLL-

generated clock jitters:

The main idea behind our technique is to combine

a DLL and a DCM to minimize the inherent

unpredictability in the period jitter of an FPGA-

based oscillator. The jitter in F1 is used to sample

a DLL-generated clock F1 from a precise high-

frequency reference clock Fh. Because the duty

cycle is not guaranteed to be exactly 50%, Fh's

likelihood of being 0 or 1 will fluctuate. As a

result, the resulting random bit stream will be

biased toward either 0 or 1. Furthermore, if the

period jitter in F1 isn't great enough (compared to

the period of Fh), the output random bit stream

can be partly predicted by looking at the bits that

came before it. To eliminate output bias and

association, several de-skewing techniques are

used, including the parity filter, the Von Neumann

de-skew filter, and strong mixing.

3. PROPOSED ARCHITECTURE

DCM may generate a wide range of output clock

speeds by dividing and multiplying an input clock

in a variety of ways. The resulting clock period is

intrinsically unpredictable due to the use of Delay-

Locked Loops (DLL) in frequency synthesis. In

other words, the Xilinx FPGA data sheet indicates

that by carefully selecting the frequency synthesis

settings, an output clock with a lot of period jitter

can be formed, which can then be used to generate

random numbers..

Figure 4: Construction Planning and Analysis

Fig. Figure 4 depicts the general design of the

proposed TRNG. Instead of two ring oscillators,

two DCM modules are employed to generate the

oscillation patterns. Future outcomes are highly

unpredictable due to the inherent volatility of the

proposed system. DCM modules enable the

designer to further customize clock waveforms

and do not require initial calibration. Real-time

tuning is available by altering DCM settings via

DPR ports and DPR capabilities. The DFF

identifies the difference between the two clock

signals generated, making it more adaptive than

the ring-oscillator-based BFD TRNG, and

calculates the beat frequency interval at which the

faster oscillator completes one cycle more than the

slower. The DFF is initialized by utilizing a clock

signal to reset the value. The counter significantly

reduces the time necessary to produce random

numbers.

4. CONCLUSION

The construction of the ring generators influences

the unpredictability of the BFD-TRNG. Because

ring oscillators run autonomously, planning and

building the circuit on an FPGA platform with the

same number of inverters spread out in different

locations is difficult. We want to create a better,

low-overhead TRNG that is easy to configure and

deploy on the FPGA platform. Using the DPR

capabilities of current FPGAs, the suggested

architecture re-models digital clock management

(DCM). This enables dynamic modifications to

the randomization properties of the TRNG. The

dynamic reconfiguration port (DRP) present on

Xilinx clock management tiles (CMTs) simplifies

DPR.

REFERENCES

1. Sergio Callegari “Evaluation of a couple of

True Random Number Generators with liberally

licensed hardware,firmware, and drivers”, IEEE,

2015.

2. Andrei Marghescu, Paul SvastaInto

“Generating True Random Numbers - a Practical

Approach using FPGA”,IEEE 21st SIITME, 2015.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
 ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 07, 2022

4844

3. Prassanna Shanmuga Sundaram,

“Development of a FPGA-based True Random

Number Generator for Space Applications,”

Master thesis in Electronics Systems at Linköping

Institute of Technology.

4. P. Johnson, R. S. Chakraborty, and D.

Mukhopadhyay, “A PUF enabled secure

architecture for FPGA- based IoT applications,”

IEEE Transactions on Multi- Scale Computing

Systems., vol. 1, no. 2, April–June 2015.

5. Q. Tang, B. Kim, Y. Lao, K. K. Parhi, and C.

H. Kim, “True random number generator circuits

based on single- and multi-phase beat frequency

detection,” in Proc. IEEE Custom Integr. Circuits

Conf., Sep. 2014.

6. J. Von Neumann, “Various techniques used

in connection with random digits,” Nat. Bureau

Standards Appl. Math. Ser., vol. 12.

7. Mehrdad Majzoobi and Farinaz Koushanfar

and Srinivas Devadas, “FPGA-based True

Random Number Generation using Circuit

Metastability with Adaptive Feedback Control”,

Massachusetts Institute of Technology, CSAIL

Cambridge.

8. Juan C. Cerda, Chris D. Martinez, Jonathan

M. Comer, and David H.K. Hoe, “An Efficient

FPGA Random Number Generator using LFSRs

and Cellular Automata”, IEEE, 2012.

9. Vincent von Kaenel, Toshinari Takayanagi,

“Dual True Random Number Generators for

Cryptographic Applications Embedded on a 200

Million Device Dual CPU SoC”, IEEE Custom

Intergrated Circuits Conference (CICC), 2007.

10. Sammy H. M. Kwok, Edmund Y. Lam,

“FPGA-based High-speed True Random Number

Generator for Cryptographic Applications”, IEEE,

2016.

