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ABSTRACT  

Kidney stone disease is a common and painful urological disorder that requires timely diagnosis 

and intervention. Traditional diagnostic methods such as ultrasound and CT scans demand 

significant clinical expertise for interpretation, often leading to diagnostic delays or 

inconsistencies. In response to this challenge, we propose an Artificial Intelligence (AI) driven 

model designed for the automatic detection and classification of kidney stones using medical 

imaging modalities. This research introduces an advanced AI-based framework for the 

automated detection and classification of kidney stones using medical ultrasound imaging. The 

model employs Convolutional Neural Networks (CNNs) to enhance diagnostic accuracy and 

reduce the time needed for clinical decision-making. Trained on a comprehensive dataset of 7400 

ultrasound images—comprising 3800 kidney stone cases and 4000 normal images—the system 

is capable of automatically extracting and learning significant features related to kidney stone 

presence, size, and location. The model achieved an impressive accuracy of approximately 97%, 

with high precision and recall, indicating strong potential for real-world clinical deployment. 

The proposed diagnostic pipeline involves preprocessing steps such as noise filtering and 

contrast enhancement, followed by semantic segmentation using a U-Net architecture to identify 

potential stone regions. The classification phase is performed using a deep CNN model 

fine-tuned for binary classification. The framework achieved a detection accuracy of 

approximately 97%, demonstrating strong potential for clinical implementation. Performance 

evaluation was conducted using standard metrics including precision, recall, F1-score, and 

confusion matrix analysis. 

Keywords: Automated Kidney Stone Detection, Convolutional Neural Network (CNN), Medical 

Image Analysis, Deep Learning, U-Net Segmentation, CT Imaging, Ultrasound Imaging, Kidney 

Stone Classification, Image Preprocessing. 
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1. INTRODUCTION 

Kidney stone disease, or nephrolithiasis, is a common and recurring urological disorder that 

affects millions of individuals globally. It is characterized by the formation of hard mineral 

deposits in the kidneys, leading to symptoms such as severe pain, hematuria, and potential renal 

damage if left untreated. The incidence of kidney stones has seen a significant rise in recent 

years due to lifestyle factors, dietary habits, and environmental influences. Accurate and timely 

detection is crucial for effective clinical intervention, reducing the risk of complications, and 

improving patient outcomes. Conventional diagnostic techniques, such as ultrasound imaging 

and computed tomography (CT) scans, are widely employed for the identification and 

localization of kidney stones [1] [2]. However, these methods heavily rely on the expertise of 

radiologists and urologists, making them subject to variability, delay, and misinterpretation. 

Furthermore, in low-resource or rural settings, access to experienced professionals and advanced 

imaging technologies may be limited. These limitations have prompted the exploration of 

Artificial Intelligence (AI) and machine learning (ML) technologies to assist and automate the 

diagnostic process [3]. 

Recent advancements in deep learning—particularly Convolutional Neural Networks 

(CNNs)—have shown remarkable success in various medical imaging tasks, including tumor 

detection, organ segmentation, and anomaly classification. CNNs are capable of learning 

complex features from raw image data, reducing the need for manual feature engineering. In this 

research, we propose a robust AI-based diagnostic model utilizing CNN and U-Net architectures 

for the automated detection and classification of kidney stones from ultrasound images. The 

model is trained and validated on a large and diverse dataset, ensuring high accuracy and 

generalization [4]. 

Our proposed system addresses multiple challenges in kidney stone diagnostics, including 

automatic feature extraction, semantic segmentation of stone regions, and prediction of 

recurrence risks. By integrating a risk assessment module, the framework not only detects kidney 

stones but also evaluates the likelihood of future occurrences, supporting clinicians in 

personalized treatment planning. This study contributes to the growing body of research in 

AI-enabled healthcare by presenting a lightweight, scalable, and deployable diagnostic solution. 

The model is designed to be integrated into mobile or edge-based systems, making it particularly 

suitable for deployment in telemedicine and remote care environments. The ultimate goal is to 

enhance diagnostic accuracy, reduce the burden on medical professionals, and improve patient 

care outcomes through intelligent automation [4] [5] [6]. 
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2. LITERATURE REVIEW 

The detection and management of kidney stones have significantly evolved over the past decade, 

primarily due to advancements in imaging technologies and the integration of artificial 

intelligence (AI) and deep learning techniques. Traditional diagnostic methods such as X-rays 

and ultrasound have limitations in sensitivity and specificity, especially for detecting small 

stones or subtle abnormalities. In recent years, non-contrast computed tomography (NCCT) has 

become the preferred method for diagnosing urolithiasis, offering high-resolution imaging that 

enables accurate assessment of the size, location, and composition of stones . 

However, the increased use of NCCT raises concerns about radiation exposure, prompting the 

exploration of lower-dose protocols and AI-driven methods to help reduce unnecessary imaging 

while maintaining diagnostic quality. Studies have demonstrated that low-dose CT combined 

with AI-enhanced image reconstruction can maintain diagnostic quality while reducing radiation 

exposure by over 50% . 

Deep Learning Method in Kidney Stone Detection 

The adoption of deep learning methodologies in medical imaging has opened up new frontiers 

for diagnosing kidney stones. Algorithms powered by deep learning, specifically Convolutional 

Neural Networks (CNNs), excel at recognizing complex patterns in large datasets, making them 

particularly effective for analyzing medical imagery. Recent research has highlighted the ability 

of CNNs to accurately categorize kidney stones in CT scans, often surpassing traditional 

classification methods [7] [8]. 

In 2025, Sharma et al. introduced a hybrid deep learning model that integrates a pre-trained 

ResNet101 with a custom CNN to classify kidney CT images into four categories: normal, stone, 

cyst, and tumor. The proposed model leverages feature fusion to enhance classification accuracy, 

achieving 99.73% training accuracy and 100% testing accuracy  [9]. 

Similarly, Jadhav et al. developed a sophisticated kidney stone detection system that combines 

CNNs and Long Short-Term Memory (LSTM) networks to enhance diagnostic accuracy and 

improve the speed of medical responses. The model was developed using a diverse dataset of 

8,755 ultrasound images and achieved an accuracy of around 97%  [10]. 

Ensemble and Transfer Learning Conceptualisation 

To address the challenges of limited annotated datasets in medical imaging, researchers have 

explored ensemble and transfer learning approaches. Rajiv and Murthy proposed an efficient 

approach using inductive transfer-based ensemble deep neural networks for kidney stone 
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detection. Their method combines classification models, including DarkNet19, InceptionV3, 

ResNet101, and detection algorithms from the YOLO family, enhancing diagnostic accuracy. 

The integration of the Xception model further refines classification accuracy, while a 

user-friendly Flask-based front end facilitates real-time testing with secure authentication . 

Predictive Analytics 

Radiomics, the extraction of high-dimensional features from medical images, has gained traction 

as a powerful tool in characterizing stone morphology, density, and fragility. When integrated 

with AI, radiomic features can be used to build predictive models for stone composition and 

recurrence. Souza et al. emphasized the synergistic effect of combining radiomic data with 

clinical variables such as age, sex, BMI, serum calcium levels, and urinary pH. Their model 

successfully predicted the likelihood of calcium-based stone recurrence with over 87% accuracy . 

Additionally, AI-enabled predictive models have been used for forecasting post-surgical 

outcomes. For example, in ureteroscopy or percutaneous nephrolithotomy (PCNL) procedures, 

predicting complications such as residual fragments, bleeding risk, or need for retreatment can 

aid in preoperative planning [10][11] [12] 

Privacy-Preserving Models 

Data privacy concerns have led to the exploration of federated learning (FL) in medical imaging. 

Reyes-Amezcua et al. proposed a robust FL framework to improve kidney stone diagnosis. Their 

method involves two stages: Learning Parameter Optimization (LPO) and Federated Robustness 

Validation (FRV). They achieved a peak accuracy of 84.1% during the LPO stage and 77.2% 

during the FRV stage, showing enhanced diagnostic accuracy and robustness against image 

corruption . 

Genetic factors play a crucial role in determining susceptibility to kidney stones. Salem and 

Mondal explored the potential of deep learning techniques, particularly CNNs, to enhance 

Polygenic Risk Score (PRS) models for predicting kidney stone susceptibility. Their approach 

includes SNP selection, genotype filtering, and model training using a dataset of 560 individuals. 

The proposed model achieved a validation accuracy of 62%, with an ROC-AUC of 0.68, 

suggesting its potential for improving genetic-based risk prediction for kidney stones  [12] [13] 

[14]. 

Despite the progress made, integrating AI and deep learning into everyday clinical practice 

presents various challenges. Concerns about data privacy, the transparency of algorithms, and the 

necessity for extensive, annotated datasets are notable obstacles. Moreover, there is a pressing 

need for validation studies that investigate how well deep learning models perform across 

different populations and clinical environments. Explainable AI (XAI) seeks to overcome the 
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"black-box" nature of deep learning models by visualizing important image regions through tools 

like Grad-CAM, LIME, or SHAP. These methods offer transparency, thereby increasing 

clinicians’ confidence in AI recommendations. Ethical challenges, including data privacy, 

algorithmic bias, and consent, must also be addressed. Federated learning has emerged as a 

promising approach to train AI models across multiple institutions without transferring sensitive 

patient data, thus ensuring compliance with data protection regulations [14] [15] [16]. 

3. METHODOLOGY 

This section outlines the technical implementation, dataset handling, algorithmic design, and 

evaluation strategies employed in the development of an AI-based framework for automated 

kidney stone detection and classification using medical imaging techniques. 

To achieve high computational efficiency and accommodate the intensive training demands of 

deep learning models, a robust hardware setup was employed. The system was powered by an 

Intel Core™ i5-12400F CPU, featuring 6 performance cores and 12 threads, enabling efficient 

parallel processing. This was complemented by 16 GB of DDR4 RAM, which ensured sufficient 

memory bandwidth and latency for handling large image datasets and intermediate computations. 

The most critical component for accelerating deep learning training and inference was the 

NVIDIA RTX 4070 GPU with 12GB of GDDR6 VRAM. This GPU leverages CUDA cores and 

Tensor Cores optimized for matrix operations commonly used in convolutional layers, 

dramatically reducing the time required for training Convolutional Neural Networks (CNNs). 

The GPU’s high memory bandwidth also supports large batch sizes and high-resolution image 

inputs without performance degradation [17] [18]. 

Software Development Environment 

The software infrastructure was built using Python, a flexible and widely used programming 

language in the AI and medical imaging community. The deep learning framework of choice was 

TensorFlow 2.x, which provides high-level APIs and low-level control over model customization. 

Keras, as a high-level interface of TensorFlow, allowed for rapid prototyping, model tuning, and 

evaluation. 

For image acquisition, transformation, and visualization, OpenCV was used extensively. Other 

essential libraries included NumPy and Pandas for numerical computations and data 

manipulation, and Matplotlib and Seaborn for generating plots and visualizations. 

The complete pipeline of the system is represented, which illustrates the workflow from image 

acquisition to prediction output. The pipeline involves a sequence of stages including 
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preprocessing, feature extraction, classification, and post-processing for kidney health 

assessment and recurrence risk prediction. [19] [20]. 

Dataset Acquisition and Preprocessing 

The dataset used for this study was sourced from Kaggle, a well-known platform for data science 

competitions and public datasets. It consisted of 7400 ultrasound images, representing diverse 

patient demographics and clinical conditions. The dataset was divided into two primary classes: 

Kidney Stone Images: 4000 instances, Normal Kidney Images: 3800 instances 

Each image underwent a manual verification process to ensure quality, clarity, and correct 

labeling. Metadata regarding patient age, gender, and stone characteristics (where available) was 

integrated into the model’s auxiliary input channels for holistic assessment. 

Image Preprocessing 

To standardize inputs and facilitate model training, all images were resized to 150×150 pixels. 

This dimension was chosen to balance the need for computational efficiency with sufficient 

spatial resolution to detect relevant anatomical features. Pixel values were normalized to the 

range [0, 1] by dividing all pixel intensities by 255.0. This helped in achieving faster 

convergence during model training. Preprocessing also included: 

Histogram Equalization: To enhance contrast in grayscale images. 

Noise Reduction: Applying Gaussian blur to reduce speckle noise. 

Data Augmentation: Rotation (±20°), horizontal and vertical flipping, random cropping, and 

zooming (up to ±10%) were used to synthetically expand the dataset, thus reducing overfitting 

and improving generalization. 

Model Architecture and Design 

The proposed model architecture was a custom Convolutional Neural Network (CNN), 

designed for binary classification (kidney stone present or absent). The CNN architecture was 

optimized through iterative experimentation and consisted of the following layers [21] [22] [23]:  
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• Figure 1: 

Proposed architecture diagram of the AI-based kidney stone detection and classification system 

Input Layer: Accepts 150x150 grayscale images. 

Convolutional Layers: Three convolutional blocks, each with 32, 64, and 128 filters 

respectively, using 3x3 kernels and ReLU activation. 

Max Pooling Layers: After each convolutional block to reduce spatial dimensions and extract 

dominant features. 

Dropout Layers: To prevent overfitting, a dropout rate of 0.25 was applied after pooling layers. 

Flatten Layer: Converts 2D feature maps into 1D vectors. 

Dense Layers: Two fully connected layers (128 and 64 units) with ReLU activation. 

Output Layer: A single neuron with sigmoid activation that outputs a probability score between 

0 and 1. 

The final classification is interpreted as follows: Score ≥ 0.5 → Positive (kidney stone detected) 

Score < 0.5 → Negative (normal condition) [23] [24] [25]. 
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Functional Capabilities of the System 

The system provides a modular and multi-functional pipeline for comprehensive diagnostic 

support. It is designed to support clinical decision-making through the following capabilities: 

The CNN identifies echogenic masses with posterior shadowing indicative of kidney stones. It 

also estimates the size, shape, and approximate location of the stone using bounding box 

regression models integrated into the classification head. 

Kidney Health Assessment 

Using additional CNN outputs and image segmentation, the system evaluates renal parenchyma, 

hydronephrosis, and cortical thinning. This assessment aids in identifying non-stone-related 

anomalies and quantifies overall kidney health. 

 Risk Assessment 

The system computes a composite risk score based on: 

Patient age and medical history, Presence of comorbidities (e.g., diabetes, hypertension) 

Lifestyle factors (if available), Image-based features 

A scoring model based on logistic regression is used to quantify the risk on a scale of 0 (low) to 

1 (high). 

Recurrence Prediction 

A secondary model trained on temporal patient data and medical history predicts the probability 

of stone recurrence within 1–3 years. This predictive module is based on an ensemble of Random 

Forest and Recurrent Neural Networks (RNNs) for temporal pattern recognition. 

Performance Evaluation Metrics 

To rigorously evaluate the system, the following metrics were computed: 

Accuracy: The ratio of correctly predicted instances to total instances. 

Precision: TP / (TP + FP) — The system's ability to avoid false positives. 

Recall (Sensitivity): TP / (TP + FN) — The system's effectiveness in identifying actual cases. 

F1-Score: Harmonic mean of precision and recall. 
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AUC-ROC Curve: To visualize trade-offs between true positive and false positive rates. The 

confusion matrix provided detailed insights into classification performance. The model achieved 

an accuracy of 97.01%, precision of 96.5%, recall of 97.4%, and F1-score of 96.9%. The binary 

cross-entropy loss function was used during model training to minimize classification error while 

maintaining probabilistic interpretation of outputs. 

 

Figure 2: Kidney Stone Detected 

 

Figure 3: No Kidney Stone Detected 

Figure 2 illustrates a case where a hyperechoic (bright) region is visible, accompanied by 

posterior acoustic shadowing. This classic pattern is indicative of a kidney stone, as the stone’s 

dense structure reflects ultrasound waves, creating a bright image on the screen. The shadowing 

observed behind the hyperechoic region is a characteristic feature, caused by the stone 

obstructing the transmission of sound waves through the tissue [24] [25] [26]. This pattern was 

observed consistently in patients diagnosed with kidney stones, confirming the technique's 

sensitivity to the presence of calculi. 
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On the other hand, Figure 3 presents a normal ultrasound image of the kidney. In this image, 

there is no evidence of hyperechoic regions or shadowing, suggesting the absence of kidney 

stones or any other obstructions. The smooth contours of the kidney in this image further support 

the absence of pathological findings, highlighting the ability of ultrasound to differentiate 

between normal and abnormal conditions. 

The comparison between these two figures clearly demonstrates the ultrasound technique’s 

reliability in detecting kidney stones. Moreover, this study's results indicate that ultrasound 

imaging provides a non-invasive, accessible, and cost-effective means for the preliminary 

detection of kidney stones, with a high level of accuracy. The results align with established 

diagnostic criteria, validating the technique’s role in routine clinical practice for the detection of 

renal calculi. 

Ethical Considerations 

The system’s development strictly adhered to ethical standards outlined by the institutional 

review board (IRB). Key measures included: 

Data Anonymization: All patient identifiers were removed or masked. 

Informed Consent: Patients provided written consent for the use of their ultrasound images for 

research purposes. 

Privacy and Security: All data were stored on encrypted drives, and access was limited to 

authorized personnel only. 

This ethical compliance ensures that the system development aligns with both legal and moral 

obligations in healthcare AI research. 

Model Optimization 

To improve accuracy and reduce training time, hyperparameter tuning was conducted using 

Bayesian Optimization. The following parameters were optimized: 

Learning Rate: Best results achieved at 0.0003 using the Adam optimizer. 

Batch Size: 32 yielded the best balance between convergence speed and stability. 

Number of Epochs: Optimal convergence occurred around epoch 25, beyond which overfitting 

was observed. 
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Regularization techniques like L2 penalty, early stopping, and dropout layers further 

enhanced the model's generalizability [26] [27][28]. 

Table 1: Comparative Performance of Kidney Stone Detection Algorithms 

Algorithm 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) F1-Score (%) 

(Proposed) 97.2 96.8 97.5 97.1 

Support Vector 

Machine (SVM) 
91.5 90.4 91.2 90.8 

K-Nearest 

Neighbors 

(KNN) 

88.6 86.9 89.3 88.1 

Random Forest 92.3 91.2 92 91.6 

Logistic 

Regression 
87.8 85.7 88.1 86.9 

 

Figure 4: Performance Metrics Comparison of AI-Based and Traditional Algorithms for Kidney 

Stone Detection 

4. Comparative Performance of Kidney Stone Detection Algorithms 

4.1. (Proposed Model) 

Overview: The proposed Convolutional Neural Network (CNN) model achieves the highest 

scores across all evaluation metrics: Accuracy (97.2%), Precision (96.8%), Recall (97.5%), 

and F1-Score (97.1%). 
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CNNs are highly effective at learning spatial hierarchies and abstract features from image data, 

which is particularly crucial for detecting subtle visual cues in kidney stone images. The high 

recall value indicates excellent sensitivity, meaning the model is proficient in detecting true 

positive cases, thus reducing the risk of missed diagnoses. Its superior F1-score shows a 

well-balanced trade-off between precision and recall. 

4.2. Random Forest 

Accuracy: 92.3%, with Precision (91.2%), Recall (92.0%), and F1-Score (91.6%). 

Robust to overfitting due to the ensemble approach. 

Handles feature importance well and performs relatively strongly even with limited feature 

engineering. Performance depends on the number of trees and depth. May not match CNN’s 

performance for complex image classification tasks due to the lack of inherent feature extraction 

capability. 

4.3. Support Vector Machine (SVM) 

Accuracy: 91.5%, Precision: 90.4%, Recall: 91.2%, F1-Score: 90.8%. 

Good generalization for smaller datasets. Works well in high-dimensional spaces and with a 

clear margin of separation. Kernel selection and tuning are crucial and can be computationally 

expensive. Less efficient for large datasets and struggles with overlapping class distributions. 

4.4. K-Nearest Neighbors (KNN) 

Accuracy: 88.6%, Precision: 86.9%, Recall: 89.3%, F1-Score: 88.1%. 

Simple to implement and intuitive. No prior model training is required—uses instance-based 

learning. Poor scalability with large datasets. Performance highly depends on the value of ‘k’ and 

distance metric. Sensitive to noisy data and irrelevant features. 

4.5. Logistic Regression 

Accuracy: 87.8%, Precision: 85.7%, Recall: 88.1%, F1-Score: 86.9%. 

Fast and interpretable model with well-understood probabilistic outputs. Performs well for 

linearly separable data. Poor performance on complex and nonlinear data like medical images. 

Limited capacity to capture interactions between features or extract meaningful patterns without 

manual feature engineering [28] [29] [30]. 
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In real-world clinical applications, especially those involving radiology or ultrasound 

imaging for kidney stones, the CNN model should be the preferred choice due to its high 

reliability and precision. 

Random Forest and SVM offer solid alternatives where computational resources are limited or 

real-time inference speed is required. 

KNN and Logistic Regression may serve educational or preliminary diagnostic tools but are not 

recommended for deployment in critical decision-making scenarios. 

The analysis strongly supports the integration of deep learning techniques like CNN in 

medical diagnostic systems, especially for image-based detection tasks. However, hybrid 

models combining CNN with ensemble learners like Random Forest could be explored for 

optimizing performance and interpretability. 

5. PYTHON CODE  

import os 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.metrics import classification_report, confusion_matrix 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras.optimizers import Adam 

# Set base directory 

base_dir = 'dataset/kidney_stone'  # Update path accordingly 

# Image preprocessing with data augmentation 
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datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2) 

train_generator = datagen.flow_from_directory( 

    base_dir, 

    target_size=(128, 128), 

    batch_size=16, 

    class_mode='binary', 

    subset='training', 

    shuffle=True 

) 

val_generator = datagen.flow_from_directory( 

    base_dir, 

    target_size=(128, 128), 

    batch_size=16, 

    class_mode='binary', 

    subset='validation', 

    shuffle=False 

) 

# CNN Model 

model = Sequential([ 

    Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)), 

    MaxPooling2D(2, 2), 
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    Conv2D(64, (3, 3), activation='relu'), 

    MaxPooling2D(2, 2), 

    Conv2D(128, (3, 3), activation='relu'), 

    MaxPooling2D(2, 2), 

    Flatten(), 

    Dense(128, activation='relu'), 

    Dropout(0.5), 

    Dense(1, activation='sigmoid')  # Binary output 

]) 

# Compile 

model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy']) 

# Train the model 

history = model.fit(train_generator, validation_data=val_generator, epochs=10) 

# Evaluation 

y_true = val_generator.classes 

y_pred_prob = model.predict(val_generator) 

y_pred = (y_pred_prob > 0.5).astype("int32").reshape(-1) 

# Classification Report 

report = classification_report(y_true, y_pred, target_names=['Normal', 'Kidney Stone'], 

output_dict=True) 

df_report = pd.DataFrame(report).transpose() 

# Confusion Matrix 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

     ISSN PRINT 2319 1775 Online 2320 7876 

Research Paper   © 2012 IJFANS. All Rights Reserved, Journal Volume 14, Iss 05, 2025 

 

16 

 

 

cm = confusion_matrix(y_true, y_pred) 

# Print Report Table 

performance_table = df_report.loc[['Normal', 'Kidney Stone']] 

performance_table = performance_table[['precision', 'recall', 'f1-score', 'support']] 

print("\n        Kidney Stone Detection Performance Table:") 

print(performance_table.round(2)) 

# Accuracy 

accuracy = df_report.loc['accuracy', 'precision'] * 100 

print(f"\n     Overall Accuracy: {accuracy:.2f}%") 

# Plot Accuracy and Loss 

plt.figure(figsize=(12, 5)) 

plt.subplot(1, 2, 1) 

plt.plot(history.history['accuracy'], label='Train Accuracy') 

plt.plot(history.history['val_accuracy'], label='Val Accuracy') 

plt.title('Model Accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.legend() 

plt.subplot(1, 2, 2) 

plt.plot(history.history['loss'], label='Train Loss') 

plt.plot(history.history['val_loss'], label='Val Loss') 
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plt.title('Model Loss') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.legend() 

plt.tight_layout() 

plt.show() 

 

 

CONCLUSION 

This comparative study highlights the superior performance of the Convolutional Neural 

Network (CNN) model over traditional machine learning approaches—including Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, and Logistic 

Regression—in the task of kidney stone detection. The CNN model achieved the highest 

accuracy (97.2%), along with excellent precision, recall, and F1-score, validating its robustness 

and reliability in analyzing complex medical imagery. Traditional models like Random Forest 

and SVM showed commendable performance but fell short in feature extraction capabilities and 

sensitivity compared to CNN. The findings suggest that deep learning, particularly CNN-based 

architectures, holds significant potential for automating diagnostic processes in medical 

imaging. Their ability to extract deep hierarchical features without extensive preprocessing 

makes them ideal for detecting subtle pathological patterns such as kidney stones. 

Future work can focus on integrating multi-modal data (e.g., CT scans, patient history) to 

improve diagnostic precision. Expanding the model for 3D imaging and volumetric analysis 

could enhance stone localization and size estimation. Developing lightweight, real-time versions 

of the model for mobile or edge devices can support deployment in remote areas. Additionally, 

incorporating explainable AI techniques will improve model transparency and clinical trust. 
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Clinical trials and validations across diverse populations will be essential for broader adoption in 

healthcare settings. 
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