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Abstract:  

This paper presents a simple method to assess the cost of extracting group of phenols from bio-oil derived from 

pyrolysis of sugarcane bagasse and the incidental profits by employing by what has herein evolved as Supercritical 

Fluid Extraction (SFE) technology. Further, cost-cum-profit optimization has been done considering minimization 

of batch time and enhanced purity as the contributive parameters based on experimental results. However, it is 

acknowledged that the solute extracted using supercritical carbon dioxide in this process is generally significantly 

different from solute extracted using other conventional alternatives as regards both purity of, and components in, 

such other extracts. The extract obtained through SFE route deserves to be recognized as an updated, yet distinct, 

product vis-a-vis conventional/traditional extracts currently available commercially.  
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1. Introduction 

Supercritical extraction using carbon dioxide as a solvent offers unusual possibilities for the selective extraction, 

fractionation and purification of the oils due to the possibility of adjusting the composition of the extract by varying 

the solvent density. Commercial plants for supercritical fluid extraction of natural substances have now been in 

operation for several years. Manufacturing costs are significantly influenced by the energy requirement. Energy 

optimization may improve the production economics of existing extraction plants. Supercritical fluid extraction is 

associated with high investment costs; nowadays, an easy method for technical–economical evaluation of 

supercritical fluid process is not available [1-5]. Thus, a simple method to estimate the cost of manufacturing of 

extracts and profit by supercritical fluid technology is presented. The manufacturing costs of group of phenols from 

sugarcane bagasse pyrolysis oil (SBPO) were estimated using the procedure proposed [6-10]. The quality of the oil 

extracted through the supercritical fluid extraction route depends on the extraction time.  Hence, batch time is 

optimized for maximum profit. The solute extracted using supercritical carbon dioxide is significantly different from 

their conventional equivalents. There is, in general, apprehension about the high capital cost for high-pressure 

extraction equipment with high cost of the technology. Nevertheless, energy costs in this process are lower than 

those incurred in steam distillation and solvent extraction, which more than offset the high capital costs involved in 

the supercritical CO2. The higher capital cost of Supercritical Fluid Extraction (SFE) equipment is often offset by 
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more complete extraction and the purity of the extract [11-14]. The extraction time to yield the same amount of 

solute is also very less as compared to the solvent extraction process or steam distillation process. 

2. Economic appraisal of phenol extraction from bagasse pyrolysis oil 

It was observed from the experimental study that the first noticeable extract from bagasse pyrolysis oil was present 

at 120 bar pressure. Therefore, the experiments were conducted at 120 bar and 300 bar (maximum possible on the 

present experimental set-up) and at 333 K. The yield of phenol rich oil for 120 bar and 300 bar was 9 % and 15 % 

respectively [15-19]. The maximum yield of SFE extracted Sugarcane Bagasse Pyrolysis Oil (SBPO) occurs at 300 

bar and 333 K. For economic appraisal of phenol extraction same operating parameters have been considered. 

2.1 Estimation of the yield 

The model proposed method has been used for the yield estimation of the phenol rich sugarcane bagasse oil. The 

model was validated for the experimental results obtained at 300 bar pressure and 333 K temperature as mentioned 

earlier [20-26]. The model parameters obtained by regressing experimental results are shown in Table 1. 

Table 1: Model parameters for SBPO at 300 bar and 323 K. 

Model Parameter Phenol rich bagasse oil 

ry
 

0.005241 

A  0.5241 

B  0.0000445 

 

2.2 Estimation of the annualized manufacturing cost 

The cost of production of the phenol rich oil using SFE is calculated based on the various costs, namely, initial 

investment cost (capital cost), additional process and operational costs (like for coolant’s refrigeration, pumping, 

reheating, maintenance and repairs, etc. (P&OMR cost), and raw material cost, labor cost, cost for carbon dioxide, 

cost for utilities, etc. (consumptive costs), (revenue costs being the sum of operational and consumptive costs). 

Period-wise (annual as considered herein) raw material cost comprises: the price of the material from which the 

solute is to be extracted, the cost of transportation of the raw and finished products, cost for grinding the raw 

material to the requisite size, and the cost of any pretreatment of the raw material before feeding. The cost of raw 

sugarcane bagasse oil obtained through pyrolysis is typically taken as $ 50 per tonne.The annualized (equivalent) 

cycle cost (ALCC) for the output product (on per unit weight basis times the total weight of the output over the 

period – annual as already considered) comprises the capital recovery component of the capital cost involved taken 

together with the annual revenue costs (as defined above). Factors referring to the total investment cost of the 

commercial plant includes: the cost for two 200 liter extraction columns, a pump, a condenser, and the solvent 

reservoir besides what all are to be assigned in lieu of revenue cost impinging on successful extraction. For this 

purpose the following become relevant [27-31]. The solvent is chilled to its liquid state prior to its entry to the liquid 

pump by a secondary refrigerant system. The heat rejected by the refrigerant system in this chilling process is 

optimally used to heat the solvent to pre-selected temperature at its later injection stage prior to the extraction 
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column entrance. The life of the plant is assumed as 20 years (n in Eq.(1)) with no salvage value. The ALCC is 

calculated as the product of the total investment and the capital recovery factor (CRF). 

 

 

 The discount rate d (fraction or percentage) is assumed as 10% for which CRF is calculated by 
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Where, d is the rate of discount and n is plant life. 

  

                                                          ALCC = CRF Plant cost                                                (2) 

 

The cost of the commercial SFE unit is considered $ 12 00 000 (Rosa and Meireles, 2005). The annual labour cost is 

calculated on the basis two labours per shift, a plant engineer and two skilled technicians. The typical wage for a 

labour, an engineer and a skilled technician in India is $ 60, $ 300 and $ 100 p.m., respectively. The annual 

maintenance cost is taken as 10% of the annualized capital cost [32-36]. The energy costs are incurred in (i) 

compressing liquid CO2 to the pressure required for effecting extraction (ii) heating this compressed high pressure 

CO2 to the required temperature for effecting extraction (iii) at the later process step of heating the expanded stream 

of loaded CO2 to effect separation (and collection) of the extract load into the separator and (iv) cooling the deprived 

CO2 to liquid phase followed by impelling it through the pump into the storage tank. These energy costs are now 

discussed referring to the sectional flow diagram shown in Fig.1 

 Fig.1 shows a conceptual process flow diagram that uses a supercritical fluid as the solvent. Solvent is pressurized 

through the pump impeller from state 1 to 2 to the requisite pressure for extraction. Assuming overall efficiency 

( p ) of pump-motor monobloc system as 0.8 (which may however generally be somewhat lesser), total energy 

required (W21) in this process, in terms of enthalpies, here and wherever further appropriate, is given as 

                                                        

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Fig.1 Sectional Schematic Flowchart of the Solvent in SFE Process. 

 

 

The next process of heating the solvent to the temperature required for extraction (state 3) in the electric heater 

involves using up of energy W32 (equivalent to heat energy Q32) which is given as 

                                       
)( 233232 hhQW −==

                                                                   (4) 

After the instance of extraction, the solute-saturated solvent is depressurized to the tank pressure (state 4) through 

the expansion valve (without any external energy input), resulting incidentally in cooling of the partially released 

solute and also the solvent CO2 to its dry ice phase. This mixture is to be heated by an electric heater to separate the 

solute from the solvent (state 5). (Total success of the process is mandated on that the solvent so separated from the 

solute is free from any solute traces.) As was already mentioned, the regenerated solvent is then cooled in the 

refrigerating unit (heat exchanger) to flow into the impeller inlet in the pump, thus initiating the next cycle.  

The energy required by the electric heater (W54) is given as 

                                                  
( )455454 hhQW −==

                                                        (5) 

  The energy associated with the refrigerating unit (W15) is written as 

                                                         


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15

                                                            (6) 

Where COP is the co-efficient of performance of a refrigerating system. 

Reading the above energy requirements additively, the total energy consumption (W) in this process is  

                                                      15543221 WWWWW +++=
                                               (7) 

     As declared already, h1, h2, h3, h4, and h5 are the respective state-specific enthalpies of the solvent. For 

computational applications, the specific enthalpies of carbon dioxide in the supercritical and liquid regions 

respectively were developed separately by regression analyses recounted from property tables of CO2 as: 
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for supercritical region (100 to 350 bar pr., 300 to 340 K temp., AARD   1.5%): 

262 109516.40008726.0006723.06999.15161.36343.769 TPPPTPTh −+−−++−=   (8) 

  and, for liquid region (40 to 200 bar pr., 270 to 300 K temp., AARD  2.0%): 

282 1028.70003.0002810.06545.06635.267.524 TPPPTPTh −−+−++−=                          (9) 

Equations (8) and (9) have been developed to assist as robust inputs in programmed computations. 

We next consider the make-up cost of the solvent. The incidence in this cost is predicated as under. During 

unloading the post-extraction adscititious residue from the extractor after each run, it becomes inevitable that the 

remnant solvent in the extractor, which by now has to be brought down to the tank pressure to prevail at 40 bar, has 

to be discarded and same amount of solvent has to be replenished from make-up system (preceding stage 5 – refer 

Fig.1). The requisite amount of solvent to replenish to the volume of the extractor (400 liters in this study) is 

calculated on the basis of the solvent density at this tank pressure. The cost of solvent is taken as $ 0.1 per kg as 

sourced from M/S Sicgil Corporation, Bombay. The next component, namely, cost of electricity is taken as $ 0.1 per 

kWh. 

2.3 Scaling-up for industrial production 

Model developed in the previous section is used for the scale-up estimates. Numerical magnitude of the model 

parameters (yr, A and B) characterized in the derivation of model equations are obtained from the data of the 

laboratory unit. Pertinently, the derivation of the equations is immanently equally applicable irrespective of the scale 

of the production set-up [37-41]. “Industrial scale unit should have the same performance as that of laboratory scale 

unit for the same particle size, same bed density and the same ratio between the mass of the solid and the solvent 

flow rate”, read from (Rosa and Mireles, 2005) adduces in this context. The ratio between the mass of particles in 

the extractor and solvent mass flow rate in the laboratory experimental set-up was 193 seconds. The CO2 mass flow 

rate to be used in the industrial production prototype extraction unit can be calculated by dividing this 193 [kg of 

particles × s/ kg of solvent] with the weight of intended prototype production feed. The overall production mass 

together with its production time of the prototype can be estimated by this methodology of scaling-up. 

2.4 Profit optimization 

The data represented in earlier section have already been referred to in this context which highlight that 300 bar is 

best adopted. The selling cost of the product is taken as the existing cost of petro-based phenols in the market (4 $ 

per kg). The quantification mentioned here is now explained extended to scaled-up industrial production. 

2.5 Computation of profit and identification of profit maximization 

Very simply, the annualized profit will be the amount by which the annual sold price income exceeds the total 

annualized cost of production, this last item being the sum of annualized first cost of plant including erection and 

commissioning, annual material an labour costs in respect of raw material cost as delivered at site, preparation of 

raw material to size and pretreatment, plant operation cost including incidental refrigeration, heating and pumping, 

etc., cost of solvent, man power cost of all descriptions, annual maintenance and repairs and energy costs. These 
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have been individually described already. (Depreciation on equipment, disposal of wastes, office and overhead 

costs, packaging labeling and marketing costs, rentals, etc. may need consideration though not considered here. 

Considering depreciation would amount to double-counting after having considered animalization of the plant’s 

initial cost [42-48]. The other items would need to be factored into and set out against the profit and hence 

emphasize the obligation to maximize the profit.) Based on the scaled-up computations cogently with the 

experimental data from the laboratory set-up, the two graphs shown in Fig.2 have been developed relating each of 

cost of production and also annualized profit to the extraction time run for each feed.  

The profile of the profit curve bears out the discussion in the previous section.  At the left hand of the curve the 

quantity of the extract being small, the profit is hedged notwithstanding the high purity of the extract. Also to be 

aware of at the left hand of the curve is the fact that the raw material cost as a proportion within the total 

manufacturing cost is high and, with the quantity extracted being small, the manufacturing cost in its totality is also 

high. On the other hand, the labour and other utility costs for the smaller extraction durations are proportionately 

smaller. The opposite influences gain in importance with increase in extraction time. These are demonstrated in 

Fig.3. Moreover, the profit improves to a maximum at the extraction time of 2.24 h. Though the profit values are 

nearly the same for extraction times 1.92 and 2.56 and does not increase significantly either in the experimental data 

range, cost minimization suggests that run time just around 2.24 h is best recommended [49-54]. However to capture 

as much as possible the extracted oil content, run time up to 2.56 h can be recommended for improving commercial 

viabilities [55-59]. In addition to employing net profit as a criterion for optimal run time for adherence in prototype 

production, the internal rate of return (IRR) was also computed for this optimal run time to ward off any bias in the 

net profit criterion [60-63].This optimal run duration with its annual profit of 81,300 dollar results in an IRR of 

nearly 19% which shows a good comfort level [64-66].    
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Fig 2: Variation of SBPO cost and annual Profit 
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Fig. 3 Influence of different cost components on manufacturing of SBPO 

 

3. Conclusion 

Benchmark studies establish that further investigation for extraction of SBPO the other essentials like costs, selling 

prices and profits shall be based on working conditions of 300 bar, 333 K. Optimum extraction time for these 

products per run are technologically as well as commercially most economical and profitable. With the annualized 

cost of the plant inclusive of its installation being by far the largest component in the total cost of extraction, 

multiple shifts and near continuous working of the plant should be ideally pursued. The optimum extraction time is 

nearly twice the lower breakeven time and just nearly half the higher breakeven time as seen from Fig.1 and 2, 

conforming to comparable conditions in the broad spectrum of several industries. The IRR of 19% for extracts from 

SBPO shows the economic viability of the extraction of such chemicals from biomasses through SFE route. Since 

the monetary computations are based on 2005-2006 basis in Indian rupees, appropriate quantitative changes in the 

costs, profit, proportion of profit, and magnitude of IRR may be called for. Sensitivity analyses may further be done 

in terms of the individual cost components.   
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