
IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

338 | P a g e

Research paper

A STUDY OF DIFFERENT PLATFORMS AND

PROGRAMMING LANGUAGES FOR INDUSTRY APART

FROM THE EDUCATION SECTOR

Dr E. SriDevi
1

,

Asst. Professor, Department of C.S.E, Koneru Lakshmaiah Education Foundation, Guntur,

A.P, India – 522502.

V.PremaLatha
2

Assoc. Professor, Department of C.S.E, Koneru Lakshmaiah Education Foundation, Guntur,

A.P, India – 522502.

Abstract:

In the digital age, computer programming is both a fundamental literacy and the universal

language of our planet. Without a doubt, all students benefit from learning computer

programming at a young age, if not for their daily lives. Adolescent students benefit from

learning programming reimbursement in terms of improved communication, thought

processes, and thinking abilities. These advantages can help young people acquire, build, and

enhance the skills necessary for the twenty-first century. Making computer programming

appealing and engaging for students in elementary, secondary, and university settings is one

of the major concerns facing scientists and enlightening practitioners in the field. Using a

variety of educational software programmes could help with this problem. There are

numerous effective instances of educational software being utilised in classrooms. The focus

of this paper is on the value of educational software tools for computer programming

fundamentals instruction and learning. A detailed explanation is provided for some of the

most important skin tones of these tools, such as object-oriented programming, instantaneous

criticism, and visuals. The author offers a number of the instructional software tools that are

mentioned above that can enhance computer programming instruction, teaching, and industry

expectations in the education sector.

“Keywords: Computer Programming, Industry Need, Education Sector, Enlightening

Software, Reimbursement Programming.”

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

339 | P a g e

Research paper

INTRODUCTION:

The background of computer languages as options for higher education institutions and

industry use in programming courses. The study examines events in two developed nations

and identifies themes that might be present in other urbanised countries' language collection

histories. History demonstrates a recurring set of issues for individuals engaged in language

selection.This study demonstrates that decision-makers in the selection process can draw

insights from history.

A common way to describe the history of computing is in terms of important advances in

hardware. Australia and the United States both contributed early to computing. Many people

believe that Computer Corporation invented programmable computers. The government

science organisation, the fourth programmable computer in the world, which executed its first

test programme in 1949, is credited with starting the history of programmable computers in

many nations. Produced by the government science organisation, this computer was

operational at the University of Melbourne into the 1960s and is still in complete form at the

Melbourne Museum of Victoria. Australia entered the computing world earlier than the

United States, which makes a comparison with them interesting.

2. TIMES GONE BY LANGUAGE DEVELOPMENT

In computer programming, the first steps are very important. Prior to progressively

moving on to C, older generations were taught languages like Basic, Fortran, and Pascal.

However,These computer languages require an understanding of well-represented expression

through logical and mathematical formulations. When young children enter a traditional

.They become disinterested and demoralised when learning programming language because

one of the main challenges Understanding a programming language's syntax is a necessary

part of learning the language. As a result, programming has dealt with older elementary

school pupils. These days, computers Languages such as Python, Delphi, C++, C#, and Java

also need a comparable degree of prior awareness. The advent of new visual programming

languages, such as Visual Basic and Visual C, was predicted to simplify the programming

process. Unfortunately, it ended up that inexperienced programmers should not use them. The

following is a list of some notable

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

340 | P a g e

Research paper

programming languages, with the development year indicated in parenthesis: 1957 Fortran,

Lisp

Basic 1964, Logo 1968, Pascal 1970, C 1972, C++ 1980, Python 1991, and Visual

Scratch 2003, Delphi 1995, JavaScript 1995, Java 1995, and Basic 1991. Allowing for the

fact that programming is one of the most important 21st-century skills, the primary issue is

how to allow children to begin programming before they are able to read. It's commonly

believed that learning programming and foreign languages at a young age is beneficial. To

put it another way, "the earlier, the better" applies to learning programming; there is no age

too young. It is evident that learning while spending a lot of time in front of a computer is not

the best option for younger students. Quick interactive multimedia apps have been shown to

be a viable substitute that makes learning programming simpler. This shift involves the use of

instructional games and illustration programming languages.

3. TRENDS IN LANGUAGE ASSORTMENT

Unlike previous programming languages, which prioritised arithmetic computation, Logo

was designed to manipulate words and sentences in language. Symbol is a general-purpose

tool that can be used in a variety of ways, much like any programming language. Symbol

programming is comprehensible at various levels of complexity. When the programme first

came out, grades 6 through 8 used it, and its animation and turtle graphics were its main

selling points. The teachers' daily work increased their confidence in utilising the programme

and gave them a deeper understanding of symbols. This modifies the idea that symbols are a

"child's language."

Higher education uses symbols more frequently, and an increasing number of educators think

Logo is a useful tool for their own work. Teachers of informatics sometimes work with

students to develop small-scale learning initiatives called Logo-projects.

Additionally, he noticed a shift away from creating a stand-alone system by writing an

entire application "from scratch" in a single language and towards the use of general-purpose

languages as the integrating medium for the extensive functionality provided by database

packages, web-based services, GUIs, and a plethora of other COTS and customised products

that interface through an application programme interface (API). Simultaneously, "contextual

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

341 | P a g e

Research paper

concerns" pertaining to security, privacy, robustness, safety, etc., consistently rule all

applications (p. 1027).

Roberts (2004a) noted another trend: more universities were adopting Java as the

programming language for their introductory courses as a result of the object-oriented

paradigm's increasing popularity and the College Board's decision to switch the Advanced

Placement Computer Science programme to Java. He went on to note (2004b) that there were

two more issues where sharp rises had an adverse effect on pedagogy: (1) students now need

to learn a greater number of programming details, and (2) the languages, libraries, and

resources used in beginning courses are changing at a faster rate than in the past. The use of

scripting languages to teach programming concepts is a trend that Gee, Wills, and Cooke

(2005) highlighted as being increasingly visible (and contentious) because they offer "not

only a proper programming environment but also an instant link into the formation of active

web pages." In their analysis of numerous studies, many of which are already mentioned,

Parker et al. (2006a, 2006b) presented a set of criteria to be used when choosing a computer

programming language for an introductory programming course. They also created an

instrument that enables the weighting of each of those selection criteria to indicate their

relative importance in the selection process.

4. LANGUAGE SELECTION STUDIES

A list of the elements that inflated the alternative of a programming language for a

beginning course at many universities is skillfully presented. In a recent study, an

introductory programming language for IT students is carefully examined. A follow-up, new

study looks at more than 60 publications about language choice in higher education. With a

few notable exceptions, the selection of programming languages in many university curricula

is nearly identical. Languages have been created over time to address issues. For the purpose

of making teaching algorithms easier, other languages have been created. This has given rise

to two occasionally at odds schools of thought regarding the languages that should be taught

in university courses: pick a language that best facilitates students' concept development, or

favour a language that is typically or is anticipated to be widely used in industry.

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

342 | P a g e

Research paper

4.1 Categorizing Languages

As indicated in Table 1, we categories languages into classes according to a number

of linguistic characteristics that are believed to affect language quality [11, 12, 15,]. Whether

the project is written in a functional, procedural, or scripting language is indicated by the

programming paradigm. Whether the project is statically or dynamically typed is indicated by

the Compile Class.

Table 1: Different Types of Language Classes

4.2 Identifying Project Domain

We employ a combination of automated and manual techniques to categorise the

examined projects into distinct domains according to their features and functionalities.

Readme files and project descriptions are included with every project on GitHub, outlining its

features.

First, we applied the well-known topic analysis algorithm Latent Dirichlet Allocation (LDA)

[4] to the text outlining the project's features.

o LDA finds a set of topics from a set of documents where each topic is expressed as the

likelihood of producing a distinct word.

o LDA additionally calculates the likelihood of assigning a given document to every topic.

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

343 | P a g e

Research paper

Table 2: Characteristics of Domains

5. EXPECTATION OF INDUSTRY

Industry getting, or the use of a language in commerce and industry, is the term used

to describe the market penetration of a specific language in industry. Often called "industrial

relevance," this can be evaluated by counting the number of current and predictable positions

as well as the current and projected usage. Stephenson asserts that 23.5% of the schools in his

study support his claim that this feature is under the most pressure when it comes to language

selection. As evidenced by the previous use of ALGOL and Pascal, Lee and Stroud point out

that real-world suitability was once a factor with little weight, but that attitude does appear to

be changing. They observe that one important factor for their students is their ability to

resume in a language that is widely accepted in technology. According to a 2001 survey

conducted across all universities, the primary determinant of introductory language choice

was perceived industry demand. King acknowledges that many language choices are based

on current appeal or the likelihood of future popularity. However, he points out that picking

popular languages has several real-world advantages, such as encouraging students to study a

language they are familiar with and know is in demand and providing a wide range of books

and language resources for those languages.

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

344 | P a g e

Research paper

5.1 Identifying top languages.

The number of open source GitHub projects created in each language is the first step

in determining which languages are the most popular on GitHub. The top languages with the

most projects are then selected. Assigning a single language to a project can be challenging,

though, since multiple languages are frequently used to develop a project. A GitHub project

repository's language distribution can be measured using GitHub Linguist [9].GitHub

Linguist counts the number of source files with various extensions because a project's source

file extensions can be used to identify languages.

The primary language of the project is designated as the one with the greatest number

of source files. This data is stored in GitHub Archive. We group projects according to the

main language used in each. Next, as indicated in Table 1, we choose the top languages with

the greatest number of projects for additional examination.

Table 3: Top three projects in each language

6. CONCLUSION

Teachers, scientists, experts, and educational institutions should be aware of current

scientific and technological advancements. The ability to use technology to access,

administer, incorporate, and evaluate information, create new knowledge, and effectively

communicate with others are all examples of 21st century skills that they should value and

promote. These skills also include thinking and problem-solving abilities, communication and

self-directed learning abilities, and information and communication skills. In addition, there

are other important aspects to take into account when choosing a programming language. I.e.

Though practical and educational concerns remain paramount, consideration of other factors

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

345 | P a g e

Research paper

that influence the selection process must also be present. A number of factors have been the

subject of recent studies. The bottom line is that when choosing a language, academics must

carefully consider what is in the best interests of the students and take all factors into account.

REFERENCES

 [1] Ad Hoc AP CS Committee (2000). “Round 2: Potential Principles governing language

selection for CS1-CS2.” http://www.cs.grinnell.edu/~walker/sigcse-ap/99-00- principles.htm

 [2] Allison, I., Ortin, P., and Powell, H. (2002). “A virtual learning environment for

introductory programming.” Proceedings of the 3rd Annual conference of the Learning and

Teaching Support Network Centre for Information and Computer Sciences, Loughborough,

UK.

[3] Bergin, T.J. and Gibson, R.G. (1996) History of Programming Languages-II. USA: ACM

Press.

 [4] Boom, H. J. and de Jong, E. (1980). “A critical comparison of several programming

language implementations.” Software: Practice and Experience 10, 435–473.

[5] de Raadt, M., Watson, R., and Toleman, M. (2003a). “Introductory programming

languages at Australian universities at the beginning of the twenty first century.” Journal of

Research and Practice in Information Technology 35(3): 163-167.

[6] de Raadt, M. Watson, R., and Toleman, M. (2003b). “Language tug-Of-war: Industry

demand and academic choice.” Australasian Computing Education Conference (ACE2003),

Adelaide, Australia., Australian Computer Society, Inc.

 [7] Dijkstra, E. W. (1972). “The humble programmer.” Communications of the ACM 15(10),

859– 866.

[8] Emigh, K L. (2001). “The impact of new programming languages on university

curriculum.” Proceedings of ISECON 2001, Cincinnati, Ohio, 18, 1146-1151. Retrieved July

10, 2005 from http://isedj.org/isecon/2001/16c/ ISECON.2001.Emigh.pdf

 [9] Friedman, F. L. and Koffman, E. B. (1976). “Some pedagogic considerations in teaching

elementary programming using structured FORTRAN.” Proceedings of the ACM

SIGCSESIGCUE Technical Symposium on Computer Science and Education, 1-10.

[10] Furugori, T. and Jalics, P. (1977). “First course in computer science, a small survey.”

ACM SIGCSE Bulletin, 9 (1), 119-122.

http://www.cs.grinnell.edu/~walker/sigcse-ap/99-00-%20principles.htm

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

346 | P a g e

Research paper

[11]Gee, Q. H., Wills, G. and Cooke, E. (2005). “A first programming language for IT

students.” Proceedings of the 6th Annual Conference of the Learning and Teaching Support

Network Centre for Information and Computer Sciences, York, UK.

[12] Gottliebsen, C. (1999). Computer market results 1999. C. Gottliebsen. Bayswater,

GIMA [13] Gottliebsen, C. (2001). Icon index trend report 2001. Icon index Trend Report. B.

Youston. Bayswater.

 [14] Howatt, J. W. (1995). “A project-based approach to programming language evaluation.”

ACM SIGPLAN No-tices, 30 (7), 37-40. http://academic.luther.edu/~howaja01/v/lang.pdf

 [15] Howland, J.E. (1997). “It’s all in the language: yet another look at the choice of

programming language for teaching computer science.” Journal of Computing in Small

Colleges, 12(4); 58-74, http://www.cs.trinity.edu/~jhowland/ccsc97/ccsc97/

 [16] Jenkins, T. (2001). “The motivation of students of programming.” ACM SIGCSE

Bulletin , Proceedings of the 6th annual conference on Irmovation and technology in

computer science education ITiCSE ‘01 33(3).

[17] Jenkins, T. (2002). “On the difficulty of learning to program.” Proceedings of the 3rd

annual conference of the Learning and Teaching Support Network Centre for Information and

Computing Science, Loughborough, UK.

[18] Johnson, L.F. (1995). “C in the first course considered harmful.” Communications of the

ACM 38 (5): 99-101.

[19] Keet, E. E. (2004). “A personal recollection of software’s early days (1960-1979): Part

1.” IEEE Annals of the History of Computing (October-December).

 [20] Kelleher, C. and Pausch, R. (2005). “Lowering the barriers to programming: A

taxonomy of programming environments and languages for novice programmers.” ACM

Computing Surveys 37(2): 83-137.

[21] King, K.N. (1992). “The evolution of the programming languages course.” Proceedings

of the Twenty-Third SIGCSE Technical Symposium on Computer Science Education,

Kansas City, Missouri, pp. 213-219.

[22] Kölling M. and Koch, B. (1995). “Requirements for a first year object-oriented teaching

language.” ACM SIGCSE Bullet in , Proceedings of the twenty-sixth SIGCSE technical

symposium on Computer science education 27(1). Language History - A Tale of Two

Countries 151

http://academic.luther.edu/~howaja01/v/lang.pdf
http://www.cs.trinity.edu/~jhowland/ccsc97/ccsc97/

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

347 | P a g e

Research paper

[23] Langley, N. (2004). “COBOL integrates with Java and .NET.” Computer Weekly.

http://www.computerweekly.com/articles/article.asp?liArticleID=133085

 [24] Lee, P.A., and Stroud, R.J. (1996). “C++ as an introductory programming language.” In

M. Woodman (Ed.), Programming Language Choice: Practice and Experience, London:

International Thomson Computer Press, pp. 63-82. http://www.cs.ncl.ac.uk

/oId/publications/books/apprentice/lnstructorsManual/C-H-_Choice.html

 [25] Levy, S. P. (1995). “Computer Language Usage In CS 1: Survey Results.” SIGCSE

27(3): 21- 26.

[26] Luker, P. (1989). “Academic staff development in universities with special reference to

small group teaching.” (Unpublished PhD Thesis), University of Nottingham.

[27] McCauley, R. and Manaris, B., (1998). “Computer science programs: what do they look

like?” Proceedings of the 29th SIGCSE Technical Symposium on Computer Science

Education, February, pp. 15-19.

[28] Mclver, L. and Conway, D.M. (1996). “Seven deadly sins of introductory programming

language design.” Proceedings of Software Engineering: Education and Practice

(SE:E&P’96), Dunedin, NZ, pp.309-316.

[29] Merritt, S. M. (1980). “On the importance of teaching Pascal in the IS curriculum.”

ACM SIGCSE Bulletin , Proceedings of the eleventh IGCSE technical symposium on

Computer science education SIGCSE ‘80 12(1)

 [30] Perlis, A. J. (1981). The American Side of the Development of Algol. In R. L.

Wexelblat (Ed.), History of programming languages I (pp. 25-74): ACM.

[31] Parker, K.R., Ottaway, T.A. and Chao, J.T. (2006a). “Criteria for the selection of a

programming language for introductory courses.” International Journal of Knowledge and

Learning 2 (1/2)119-139.

 [32] Parker, K.R., Chao, J.T., Ottaway, T.A., and Chang, J .(2006b). “A formal language

selection process for introductory programming courses. Journal of Information Technology

Education, 5, 133-151.

 [33] Riehle, R. (2003). “SEPR and programming language selection.” CrossTalk – The

Journal of Defense Software Engineering 16(2): 13-17, http://vkfww.stsc.hill.af

mil/crosstalk/2003/02/Riehle.html

http://www.computerweekly.com/articles/article.asp?liArticleID=133085

IJFANS International Journal of Food and Nutritional Sciences

[1]

[2] ISSN PRINT 2319 1775 Online 2320 7876

 © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 8, Issue 1, 2019

348 | P a g e

Research paper

 [34] Roberts, E. (2004). “Resources to support the use of java in introductory computer

science.” Proceedings of the 35th SIGCSE Technical Symposium on Computer Science

Education, Norfolk, Virginia, pp.233–234

[35] Sammet, J. E. (1972). “Programming languages: History and future.” Communications

of the ACM 15(7): 601.

[36] Sammet, J. E. (1981). The Early History of COBOL. In R. L. Wexelblat (Ed.), History

of programming languages I: ACM.

[37] Schneider, G.M. (1978). “The introductory programming course in computer science:

Ten principles.” ACM SIGCSE Bulletin, 10(1), 107-114.

[38] Sime, M.E., Green, T.R.G., and Guest, D.J. (1973). “Psychological evaluation of two

conditional constructions used in computer languages.” International Journal of ManMachine

Studies 5 (1), 105–113.

 [39] Smillie, K. (2004). “People, languages, and computers: A short memoir.” IEEE Annals

of the History of Computing (April-June): 60-73.

 [40] Smith, C. and Rickman, J. (1976). “Selecting languages for pedagogical tools in the

computer science curriculum.” Proceedings of the 6th SIGCSE technical symposium on

Computer science education, 39-47

