On Prime labeling of P_n (+) $N_{m,<}K_{1,n}^{(1)}:K_{1,n}^{(2)}>$, $< K_{1,n}^{(1)}:K_{1,n}^{(2)}:K_{1,n}^{(3)}>$, P_n by attaching C_3 , Alternate quadrilateral snake

X. William ¹, N.Ramya ²

- Mphil Scholar in mathematics Bharath Institute of Higher Education and Research, Selaiyur, Chennai-73
- 2. Associate Professor in Mathematics Bharath Institute of Higher Education and

Research, Selaiyur, Chennai-73

Abstract: labeling is an assignment of integers, either to the vertices or edges, or both , subject to certain conditions. Prime labeling is , in an edge adjacent vertices are relatively prime to each other. In this paper we discussed prime labeling of P_n (+) N_m graph, star graphs, and Alternate quadrilateral snake by unique way.

Keywords: Prime graph, prime labeling, $< K_{1,n}^{(1)} : K_{1,n}^{(2)} > < K_{1,n}^{(1)} : K_{1,n}^{(2)} : K_{1,n}^{(3)} >$, Alternate quadrilateral snake

Introduction:

Graph theory was presented by the French mathematician Euler in the year 1736, while managing the renowned issue of seven extensions known as Konigsberg connect issue. The issue is two islands; C and D, framed by the Pregel River in the city of Konigsberg were associated with one another and to the banks An and B with seven extensions. The issue was to begin at any of the four land regions of the city A, B, C or D stroll over every one of the seven scaffolds precisely once, and come back to the beginning stage. Euler spoke to this circumstance by methods for a diagram. The vertices speak to the land regions and the edges speak to the scaffolds. Euler demonstrated that an answer for this issue does not exist.[5]

Preliminaries:

Definition 1

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. If the domain of the mapping is the set of vertices (edges) then the labeling is called a vertex labeling (an edge labeling).[3]

Definition 2.

Let G = G(V, E) be a finite simple and undirected graph with V vertices and E edges.

© 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal

A bijection $f: V \to \{1, 2, ... |V|\}$ is called a prime labeling if for each edge $e = \{u, v\} \in E$, and $GCD\{f(u), f(v)\} = 1$. A graph that admits a prime labeling is called a prime graph. [1,2]

Definition 3

An alternate quadrilateral snake $A(QS_n)$ is obtained from a path $u_1, u_2, \dots u_n$ by joining u_i, u_{i+1} to new vertices v_i, w_i respectively and then joining v_i and w_{i [6]}

Definition 4

In graph theory, a star S_k is the complete bipartite graph $K_{1,k}$: a tree with one internal node and k leaves (but no internal nodes and k + 1 leaves when $k \le 1$). Alternatively, some authors define S_k to be the tree of order k with maximum diameter 2; in which case a star of k > 2 has k - 1leaves.[4]

Main results

Theorem 1

The graph P_n (+) N_m is a prime graph.

Proof.

Let
$$V(P_n(+) N_m) = \{u_i, u_j; 1 \le i \le n, 1 \le j \le m\}$$
 and

$$E(P_n(+)|N_m) = \{v_i, v_{i+1}; 1 \le i \le n, e_j = v_1u_j, e_k = v_nu_j, 1 \le j \le m\}.$$

We give the prime labeling for the vertices, can be classified in to three cases.

Case i. In P_n (+) N_m , when m = n.

Let us define $f: V(G) \rightarrow \{1, 2, ..., m+n\}$, as follows

$$f(v1) = 1$$

 $f(v_n) = largest prime number$

 $f(u_i)$ = rest of the number which satisfy the prime labeling.

Illustration:

When m = n = 3, P_3 (+) N_3 can be labeled as

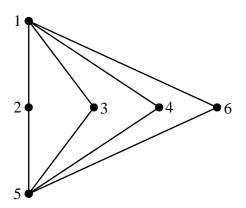


Figure 1

Case ii. In P_n (+) N_m , when m > n, the prime labeling of $(P_n$ (+) N_m) has given by

$$f(v_1) = 1$$

 $f(v_n) = largest prime number$

 $f(u_i)$ = rest of the number which satisfy prime labeling.

Illustration:

When m = 3, and n = 2, $P_2(+)$ N_3 can be labeled as

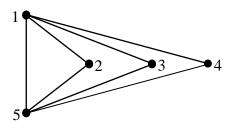


Figure 2

Case iii. In P_n (+) N_m , when m < n, the prime labeling has given by

$$f(v_1) = 1$$

$$f(v_2) = 2$$

$$f(v_3) = 3$$

Research paper

 $f(v_n) = largest prime number$

 $f(u_i)$ = rest of the number has been labeled, which is not given in $f(v_i$'s).

Illustration:

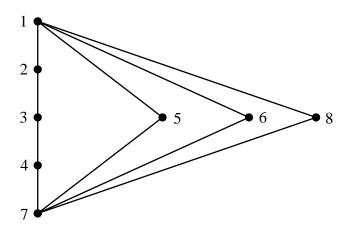


Figure 3. P₅ (+) N₃

Theorem 2.

Graph $< K_{1,n}^{(1)} : K_{1,n}^{(2)} >$ is prime.

Proof.

Let $u_1 \ u_2 \dots u_n$ be the pendant vertices of $K_{1,n}^{(1)}$ and $v_1, v_2 \dots v_n$ be the pendant vertices of $K_{1,n}^{(2)}$. Let a and b are the apex vertices of $K_{1,n}^{(1)}$ and $K_{1,n}^{(2)}$ respectively and they are adjacent to a new common vertex c. Let us define $f: V(G) \to \{1, 2, \dots 2n+3\}$, as follows,

f(a) = 1

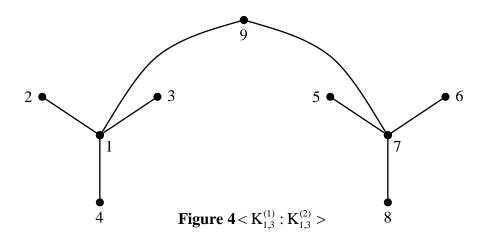
f(b) = largest prime number is <math>2n + 3

f(c) = either prime number or composite number

 $f(u_i) = 1+i$, for all i

 $f(v_i) = n+1+i$, for all i

Illustration:



Theorem 3

Graph $< K_{1,n}^{(1)} : K_{1,n}^{(2)} : K_{1,n}^{(3)} >$ is prime graph.

Proof.

Let $u_1 \ u_2 \dots u_n$ be the pendant vertices of $K_{1,n}^{(1)} \ v_1, v_2 \dots v_n$ be the pendant vertices of $K_{1,n}^{(2)}$ and $w_1 \ w_2 \dots w_n$ be the pendant vertices of $K_{1,n}^{(3)}$. Let a, b, c are the apex vertices of $K_{1,n}^{(1)}, \ K_{1,n}^{(2)}$ and $K_{1,n}^{(3)}$ respectively and $K_{1,n}^{(1)}, \ K_{1,n}^{(2)}$ adjacent to new common vertex x. Similarly $K_{1,n}^{(2)}, \ K_{1,n}^{(3)}$ are adjacent to new common vertex y.

Let us define $f: V(G) \rightarrow \{1, 2, ... 3n+5\}$ as follows,

- f(a) = 1
- f(b) = any prime number
- f(c) = largest prime number among the vertex set
- $f(u_i) = 2, 3 ... n$
- $f(v_i) = n+1 \dots n+k$ where k is last pendant vertex in v_i
- $f(w_i) = n+k+1 \dots n+j$ where j is the last pendant vertex in w_i
- f(x) = either composite or prime number
- f(y) = either composite or prime number that should satisfy the prime labeling

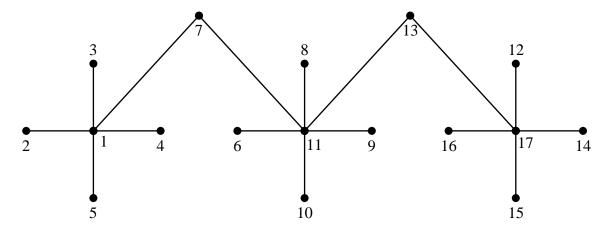


Figure 5. < $K_{1,4}^{(1)}$: $K_{1,4}^{(2)}$: $K_{1,4}^{(3)}$ >

Theorem 4

Let P_n be the path and G be the graph obtained from P_n by attaching C_3 in both end edges of P_n . Then G is a prime graph.

Proof.

Let P_n be the path $u_1 u_2 \dots u_n$ vertices.

Add two new vertices v_1 and v_2 .

Joint v_1u_1 , v_1u_2 , v_2u_{n-1} and v_2u_n

The resultant graph is G, with

$$V(G) = \{u_1, u_2, \dots u_n, v_1, v_2\}$$
 and

$$E(G) = \{u_iu_{i+1}, u_1v_1, u_2v_1, u_{n-1}v_2, u_2v_2 \ / \ 1 \le i \le n-1\}$$

Then G has n+2 vertices and n+3 edges.

Let $f: V(G) \rightarrow \{1, 2, \dots n\}$ as follows.

$$f(v_1) = 1$$

$$f(u_1) = 2$$

$$f(u_2) = 3$$

$$f(v_2) = 6$$

$$f(u_n) = 7$$

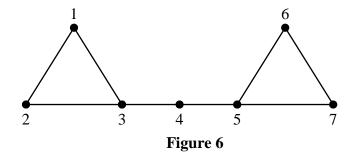
$$f(u_{n-1}) = 5$$

$$f(u_i)=i,\, 4\leq i\leq n.$$

which satisfy the prime labeling.

Illustration.

Prime labeling of G when n = 5



Theorem 5

Alternate quadrilateral snake AQn is prime graph.

Proof.

Let G be the graph AQ_n , consider a path $u_1 \ u_2 \ ... \ u_n$. To construct G, join u_i , u_{i+1} with two new vertices v_i , w_i , $1 \le i \le n-1$.

Let
$$f: V(G) \rightarrow \{1, 2, \dots n\}$$
, as follows,

Base Case i. AQ1

$$f(u_1) = 1$$

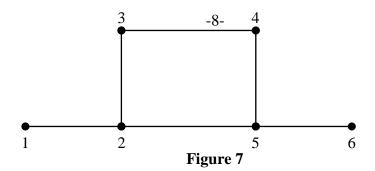
$$f(u_2) = 2$$

$$f(u_3) = 5$$

$$f(u_4) = 6$$

$$f(v_1) = 3$$

$$f(w_1) = 4$$



Case i. Prime labeling of AQ_n when n = 2.

$$f(u_1)=1$$

$$f(u_2)=2$$

$$f(u_3) = 5$$

$$f(u_4) = 8$$

$$f(u_5)=7$$

$$f(u_6) = 6$$

$$f(v_1) = 3$$

$$f(v_2)=9$$

$$f(w_1) = 4$$

$$f(w_2) = 10.$$

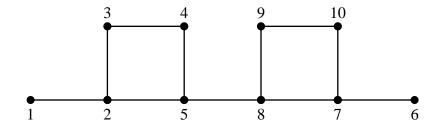


Figure 8

Case ii. In addition to AQ_2 , the prime labeling of AQ_3 , is illustrated as

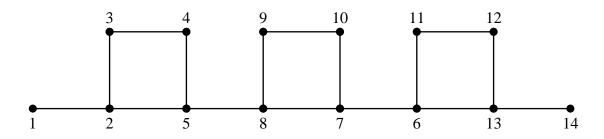
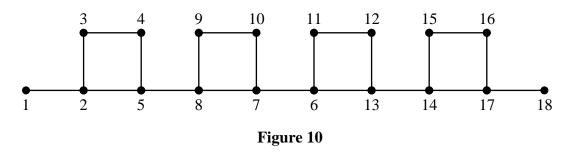


Figure 9

In addition to AQ₃, prime labeling of AQ₄, is given by,



Hence the AQ_n admits prime labeling.

Conclusion:

In this discussed the Prime labeling of paper Pn+Nm, K1,n O K1,m, K1,n⁽¹⁾ O K1,n⁽²⁾ O K1,n⁽³⁾,and Alternate quadrilateral snake, It is of interest to consider these classes of directed graphs to find labeling.

It is of interest to look in certain kind of graphs where in total prime labeling is possible up to a large prime and verify this by programming concepts

References:

- 1.J.A. Bondy and U.S.R. Murthy, Graph Theory with applications, 1796
- 2.Baskar Babujee, Prime labelings on graphs. Proc.Jangjeen Math. Soc., 10 (2007), 121 129
- 3.H.C.Fu and K.C.Huany "On prime labeling Discrete Math", 127 pp 181 186, 1994
- 4.M.A.Seoud and M.Z.Youssef, "On Prime Labeling of Graph", Congresssus Numerantium, Vol.141, 1999, pp. 203 215.
- 5.A.Tout A.N.Dabbucy and K.Howalla "Prime labelings of graphs". Nat.Acad. Sci letters 11 pp 365 368, 1982.
- 6.S.K.Vaidya and K.K.Kanmani, "Prime labeling for some cycle related graphs", Journal of Mathematics Research, Vol.2, No.2, May 2010