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Abstract 

This study represents the pioneering application of the “immersed boundary method (IBM)” to the simulation of 

radiative heat transport in “complex geometries. Pseudo time stepping” was employed alongside the “finite volume 

technique (FVM)” to solve the “radiative transfer equation (RTE)”. Sharp forced interfaces were also used by IBM. 

This method was tested in both its two types of heat transmission modes: mixed radiant-conductive and pure 

reactive. The impact of the absorbent coefficient and various conduction-radiation characteristics upon the isomers 

and heat transfer concentration in a closed system with internal complex entities was then investigated. Results 

proved the method’s value in dealing with radiative heat transport problems in extremely non-trivial geometries. 

Given that the calculations for radiative transport and energies may be solved on either the Eulerian or the LaGrange 

grid, coupled heat transfer problems do not necessitate the use of a third grid.  

Keywords: “Immersed boundary method; Radiative heat transfer; FVM; Sharp interface” 

 

Introduction  

Energy transfer in “power plants, combustion chambers, high-temperature heat exchangers, rockets, etc”. all rely 

on radiant heat transfer to some extent (Didier, Hubert, & Patrice, 2019). Radiative heat transport is typically 

modeled using the radiative transfer equation (RTE). The Zonal approach, the “Discrete Ordinate method (SN 

approximation), Mont Carlo, the Spherical Harmonics method (PN approximation)”, and the Meshless method have 

all been offered as solutions to RTE (Dhurandhar,et al 2021). The SN approximation is the most often used of 

these techniques. The CFD (computational fluid dynamics) program is where you'll most often find it in use. “The 

finite volume method (FVM) and the discrete ordinate method (DOM)” are two of the most used approaches to SN 

approximation. “Discrete transfer method (DTM)”, “modified discrete ordinate method (MDOM)”, Flux method, 

and “YIX method” are all examples of techniques that rely on the SN approximation. RTE can be difficult to solve 

because of the difficulty of applying the boundary condition in the complicated geometries. Researchers have 

offered a variety of solutions to this issue, all of which are based on the “SN approximation”. The blocked-off 

method is the quickest and most simplistic, but also the least precise. This technique uses straight lines to represent 

stair-step geometry in complicated boundary models (Moghadassian, et al., 2019). 

The blocked-off technique was then proposed to be improved upon by using the embedded boundary method 

(Abaszadeh, et al., 2019), which models complicated boundaries in a “Cartesian grid”. Additionally, “SN 

approximation” has been created for “Non-Cartesian grids” When complicated constraints are matched by the grid 

of cells, such as the “body-fitted structure, the multi-block grids, etc”. 

The immersed boundary approach (IBM) is powerful for CFD solutions. A lot of attention has been paid to it 

recently. This technique has helped solve fluid, aerodynamics, heat and mass transport, multiphase and particle 

flows, and “fluid-solid interaction (FSI)” in complex geometries. This technology's grid generation ease and 

memory and processor power utilization are advantages. IBM links Eulerian and Lagrangian variables with an 

interaction equation. Eulerian and Lagrangian variables are created on Cartesian and curved grids, respectively. We 

can now model heart valve blood flow thanks to Peskin's work. IBM enforces the boundary requirement by 

distributing a Lagrangian-point internal force on Eulerian points. IBM techniques Robin, Dirichlet, and Neumann 

are related, but their internal force and semi-explicit boundary condition computation methods differ. IBM's 
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flexibility in supporting discrete governing equations has led many researchers to use IBM with FVM, FEM, FDM, 

LBM, etc. We used it to simulate radiative heat transport in nontrivial geometries because of its numerous uses. A 

crisp direct-forced interface achieves this. For the first time, researchers suggest leveraging IBM to solve radiative 

heat transport problems. 

 
Fig. 1.1. “Schematic of the immersed boundary method” (Hu,et al 2019) 

 

Immersed boundary method  

Figure 1.1 presents IBM on a Cartesian coordinate system. “The Eulerian and Lagrangian grids” are used in 

conjunction with an interface method to form the “Immersed Boundary Method (IBM)”. IBM's approach for 

enforcing curved boundary conditions is non-local since it does not involve adjusting control volumes in the 

boundary area but rather by adding source terms to the formulas that govern. When using the direct force strategy 

or the constructive forcing methods, the source term is calculated. The grid size and computing needs will dictate 

whether you utilize diffuse or crisp interfaces. 

This study used a direct forcing approach with a crisp interface to lessen the burden on computers and prevent 

unnecessary rounding off. The procedure of enforcing boundary conditions on complex borders in radiative issues 

begins with the identification of forcing nodes (f-nodes) in the inactive part of the Eulerian grid that have at least 

one adjacent point in the active region. After determining the source terms for the radiation intensity at the f-nodes, 

the wall boundary conditions (I_W) are applied at the w-nodes of the Lagrangian grid.). 

Since Eq. (1.1) now includes the source term 𝑄𝐼𝐵
𝑚 , for enforcing IBM, Eq. (1.3) is modified as follows: 

For example:  
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Because of the need to keep the equation to a single dimension, the number 1 is arbitrarily chosen for the parameter 

𝑘𝑡 which has a unit of meters per second. 
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The required radiation intensity 𝐼𝑚 is calculated using the interpolation approach in Eq. (1.3). We employed an 

interpolation technique in our study. In this approach, the f-nodes are split in half. Both adjacent spots in the first 

set are inside the dynamic range. For these data points, we employ the bilinear interpolation technique. In contrast, 

the linear interpolation technique is employed for the second set since only one nearby point lies within the active 

subdomain. The steps involved in calculating 𝐼𝑚 via the interpolation approach are shown in Eqs. (1.4-1.5). 

𝐼𝑚 =
1

𝛿𝑥𝛿𝑦
(𝐼𝑤

𝑚 − [𝛿𝑥(1 − 𝛿𝑦)𝐼1
𝑚 + (1 − 𝛿𝑥)(1 − 𝛿𝑦)𝐼2

𝑚 + 𝛿𝑦(1 − 𝛿𝑥)𝐼3
𝑚]). . (1.4) 

𝐼𝑚 = {
(1 − 2𝛿)𝐼𝑤

𝑚 + 2𝛿𝐼1
𝑚 𝛿 < 0.5

2𝛿𝐼𝑤
𝑚 − 2𝛿𝐼1

𝑚 − (1 − 2𝛿)𝐼2
𝑚 𝛿 > 0.5

. . (1.5) 

 

“For the f-nodes at the sharp interface”, interpolation happens in both groups (as described above), as depicted by 

the stencil in Fig. 2. For the first set, w-node is the point where the immersed boundary meets the line that passes 

through f-node at right angles to it. Note that 𝛿𝑥 = (𝑥3 − 𝑥𝑤)/(𝑥3 − 𝑥𝑓) and 𝛿𝑦 = (𝑦3 − 𝑦𝑤)/(𝑦3 − 𝑦𝑓). “For the 

second set, w-node is the point where the immersed boundary” meets the line that passes through f-node and its 

neighbor. The value of is found by dividing (𝑥1 − 𝑥𝑤)/(𝑥1 − 𝑥𝑓). 
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Fig. 1.2. Comparing the top wall's indeterminate radiative temperature uniformity for different numbers of 𝜎𝑎. 

(Abaszadeh, et al., 2019) 

 

Result 

The effectiveness of this technique is tested on two standard issues involving pure radiative heat transfer. The first 

issue is a semicircular chamber containing a circular cylinder. The exterior walls are entirely black and kept at an 

average temperature of 𝑇𝑤 = 0( K), while the medium is kept at a constant temperature of 𝑇𝑔 = 1000( K). and 

does not scatter light. 𝑁𝑥 × 𝑁𝑦 × 𝑁𝜃 × 𝑁∅ = 80 × 40 × 4 × 24. is the number of spatial and angular subdivisions. 

The contrast between the accurate solution and the dispersion during the bottom wall's indeterminate radiated heat 

flow is seen in Fig. 1.3b.  

In this research, the radiative heat transfer problems were simulated using IBM and the pseudo time stepping 

approach was employed to solve RTE. For this reason, we compare the times required by the time-stepping pseudo-

solver employing steadystate solver to complete the same benchmark task. 

An enclosure of side 𝐿 = 1( m) is considered, with the top wall being hot at a constant temperature 𝑇ℎ = 1000(𝐾), 
and the remaining walls being cool at a constant temperature 𝑇𝐶 = 𝑂(𝐾). 
“Radiative equilibrium with pure scattering” (𝜎𝑠 = 10 m−1). is also assumed for the medium. A uniform 100x100 

“grid, with angular divisions” of 𝑁ℎ ×𝑁0 = 4 × 24 , is used to study the square medium.  

 

Table 1 shows that when compared to the steady-state solver, The time response and the total number of rounds 

over each of the 4-time phases only slightly differ from one another. Therefore, it follows that the false time shifting 

approach doesn't significantly slow down the final answer. As a linear solver, Eq. (1.2) may be used to determine 

the radiant intensity in a material that is actively absorbing or reflecting light. 

We will examine the effects on heat transfer in the “pure radiative and mixed radiative-conductive” regimes when 

the geometry of the cylinders inside the square enclosure is varied. The three shapes that have been looked at are a 

circle, an ellipse, and a clover with three leaves. All of these people fit inside a circle whose radius is r=0.2(" " m). 

A ratio of 2 between ellipse sizes was also assumed. All three cases studied are shown in Fig. 10. 

 
Fig. 1.3. “Schematic of the square enclosure with different internal cylinder's shapes”. 

 

Conclusion 

This study represents the pioneering “application of the immersed boundary method (IBM)” to problems in radiative 

heat transport. We find that include a spurious temporal element in the “radiative transfer equation (RTE)” solution 

does not significantly increase or decrease the time needed to complete the calculation. Our immersed boundary 

technique (IBM) was shown to outperform the “embedded boundary and blocked-off approaches”, and it provided 

a more uniform distribution of radiative heat flux along the curved wall. Additionally, the problem of coupled heat 

transfer was tackled by employing the “immersed boundary method (IBM)”. The results indicate that this approach 
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is promising for dealing with the aforementioned problems. One important part of this method for handling coupled 

heat transfer issues is the use of a single grid for both radiative and temperature computations. 
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