A STUDY OF SEMI PRIME IDEALS OF AN Γ-SEMIGROUPS. Dr. Siddaramu. R.
 Assistant Professor, Dept. of Mathematics, Smt \& Sri Y.E.R Govt. Science College, Pavagada,Tumkur,Karnatka.

Abstract

In this paper we introduce the concept of weakly prime ideals and semi prime ideals and gave some characterizations of an ordered commutative Γ-semigroup. In this paper we characterized the properties of non-empty subset of a partially ordered commutative Γ semigroup.

KEYWORDS: Commutative Γ-semigroups, partially ordered commutative Γ-semigroup, Weakly Prime Ideals and semi prime ideals.

INTRODUCTION AND PRELIMINARIES

Young In Kwon and Sang Keun Lee [1] have introduced the concept of weakly prime-ideals in po- Γ - Semi groups and gave some characterizations of weakly prime ideals. In [2] they have introduced the concepts of weakly prime and weakly semi-prime ideals in po- Γ - Semi groups and obtained the results on characterizations of weakly prime and weakly semi-prime ideals of po- Γ-Semi groups analogous to the results given by N.Kehayopulu on characterizations of weakly prime and weakly semi-prime ideals of po-Semi groups. In [3] they gave some properties of special elements in po- Γ-Semi group. M.Y Abbasi and abul Basar [4] have defined the involution in po- Γ-Semi group and extended the results of prime, semi-prime and weakly prime ideals to the involution po- Γ-Semi group. They gave characterizations of intra-regular involution po- Γ-Semi groups and establish that in involution po- $Г$-Semi group the involution preserves the order. Finally proved that the ideals of a po- Γ-Semi group with order preserving involution are prime if and only if it is intra-regular.

Definition 1:-A non-empty subset A of a partially or ordered commutative Γ-semigroup M is an ideal of M if
i) $A \Gamma M \subseteq A$ or $M \Gamma A \subseteq A$ ii) $a \in A, b \leq a$ for some $b \in M \Rightarrow b \in A$

Definition 2:-A non-empty subset T of a partially ordered commutative Γ-semigroup M is weakly prime if $\mathrm{A} \Gamma \mathrm{B} \subseteq \mathrm{T} \Rightarrow \mathrm{A} \subseteq \mathrm{T}$ or $\mathrm{B} \subseteq \mathrm{T}$ for any two ideals A and B of M .

Definition 3:-A non-empty subset T of a partially ordered commutative Γ-semigroup M is weakly semi-prime if $A \Gamma A \subseteq T \Rightarrow A \subseteq T$ for any ideal A of M.

Notation:-for $\mathrm{V} \subseteq \mathrm{M},(\mathrm{V}]=\{\mathrm{a} \in \mathrm{M}: \mathrm{a} \leq \mathrm{v}$ for some $\mathrm{v} \in \mathrm{V}\}$. We write (a$]$ instead of ($\{\mathrm{a}\}$].

WEAKLY SEMI PRIME IDEALS

Theorem 1:- An ideal T of a partially ordered commutative Γ-semi group M is prime if and only if T is both weakly prime and semi prime.

Proof: Suppose the ideal T is prime ideal of M.Then it is obvious that T is weakly prime and semi prime. On the other hand if T is both weakly prime and semi prime then proof is exactly similar to that of theorem 2.8 ii$) \Rightarrow$ iii) case.

Theorem 2:-Let M be a partially ordered commutative Γ-semigroup and T is an ideal of M then the following are equivalent.
i). T is weakly semi prime.
ii). $(\mathrm{a} М Г \mathrm{M}] \subseteq \mathrm{T}$ for all $\mathrm{a} \in \mathrm{M} \Rightarrow \mathrm{a} \in \mathrm{T}$.
iii). $I(a) \Gamma I(a) \subseteq T$ for all $a \in M \Rightarrow a \in T$.
iv).For every ideal A of M such that $А Г А \subseteq T \Rightarrow A \subseteq T$

Proof:-i) \Rightarrow ii).
Let T is weakly semi-prime. Let $\mathrm{a} \in \mathrm{M},(\mathrm{a} М Г \mathrm{Q}] \subseteq \mathrm{T}$.
Consider,(МГаГМ]Г(МГаГМ] $\subseteq ~((М Г а Г М) Г ~(М Г а Г М)] ~$

$$
\begin{aligned}
& \subseteq(М Г(\mathrm{a} М М а) Г М] \\
& \subseteq(М Г Т Г М] \\
& \subseteq \mathrm{T}=\mathrm{T} .
\end{aligned}
$$

Since (МГаГМ] is an ideal of M and T is weakly semi-prime we have (МГаГМ] $\subseteq T$.
Then we get $(\mathrm{I}(\mathrm{a}) \Gamma \mathrm{I}(\mathrm{a})] \Gamma(\mathrm{I}(\mathrm{a}) \Gamma \mathrm{I}(\mathrm{a})] \subseteq(\mathrm{T}]=\mathrm{T}$.
As T is weakly semi-prime ($\mathrm{I}(\mathrm{a}) \Gamma \mathrm{I}(\mathrm{a})]$ is an ideal of M , we have
$(\mathrm{I}(\mathrm{a}) \Gamma \mathrm{I}(\mathrm{a})] \subseteq \mathrm{T}$
$\Rightarrow \mathrm{I}(\mathrm{a}) \Gamma \mathrm{I}(\mathrm{a}) \subseteq \mathrm{T}$ and $\mathrm{I}(\mathrm{a})$ is an ideal of M, we have $\mathrm{I}(\mathrm{a}) \subseteq \mathrm{T}$.
Hence $\mathrm{a} \in \mathrm{I}(\mathrm{a}) \subseteq \mathrm{T} \Rightarrow \mathrm{a} \in \mathrm{T}$.

$$
\text { ii) } \Rightarrow \text { iii) }
$$

Let $\mathrm{I}(\mathrm{a}) \Gamma \mathrm{I}(\mathrm{a}) \subseteq \mathrm{T}$.
$\mathrm{a} \in \mathrm{I}(\mathrm{a}) \Rightarrow(\mathrm{a}] \subseteq(\mathrm{I}(\mathrm{a})]$,

$$
\begin{aligned}
& \therefore(\mathrm{M} \Gamma \mathrm{a}] \subseteq(\mathrm{I}(\mathrm{a})] \Rightarrow(\mathrm{a}] \Gamma(\mathrm{M} \Gamma \mathrm{a}] \subseteq(\mathrm{I}(\mathrm{a})] \Gamma(\mathrm{I}(\mathrm{a})] . \\
& \therefore \mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{a} \subseteq(\mathrm{a}] \Gamma(\mathrm{M} \Gamma \mathrm{a}] \subseteq(\mathrm{I}(\mathrm{a})] \Gamma(\mathrm{I}(\mathrm{a})] \\
& \\
& =\mathrm{I}(\mathrm{a}) \Gamma \mathrm{I}(\mathrm{a}) \subseteq \mathrm{T} . \\
& \\
& \quad(\mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{a}] \subseteq(\mathrm{T}]=\mathrm{T} \Rightarrow \mathrm{a} \in \mathrm{~T} . \\
& \mathrm{iii}) \Rightarrow \mathrm{iv})
\end{aligned}
$$

Let $A \Gamma A \subseteq T$ and $a \in A \therefore I(a) \subseteq(A \cup M \Gamma A]$.

$$
\begin{aligned}
\mathrm{I}(\mathrm{a}) Г \mathrm{I}(\mathrm{a}) & \subseteq(\mathrm{A} \cup M Г А] Г(\mathrm{~A} \cup М Г А] \\
& \subseteq(А Г А \cup А Г М Г А \cup М Г А Г А \cup М Г А Г М Г А] \\
& \subseteq(\mathrm{T} \cup T \cup T \cup T] \\
& \subseteq(\mathrm{T}]=\mathrm{T} .
\end{aligned}
$$

$$
\therefore \mathrm{I}(\mathrm{a}) \Gamma \mathrm{I}(\mathrm{a}) \subseteq \mathrm{T} \Rightarrow \mathrm{a} \in \mathrm{~T} \Rightarrow \mathrm{~A} \subseteq \mathrm{~T} .
$$

iv) \Rightarrow i) is obvious.

Definition: An ordered commutative Γ-semigroup is called chain ordered commutative Γ semigroup if Γ-ideals of M form a chain. i.e., for any Γ-ideals I and J of M, we have either $\mathrm{I} \subseteq \mathrm{J}$ or $\mathrm{J} \subseteq \mathrm{I}$.

Theorem: Let M be a chain ordered commutative Γ-semigroup. Then a Γ-ideal I of M is semi prime Γ-ideal if and only if I is prime Γ-ideal of M.

Proof: Assume that I is a semiprime Γ-ideal of M. Let A and B be any two two ideals sof M such that $A \Gamma B \subseteq I$. Since M is chain ordered commutative Γ-semigroup, we have $A \subseteq B$ or $B \subseteq A$. If $A \subseteq B$ then $A \Gamma A \subseteq A \Gamma B \subseteq I$ and $A \subseteq I$ follows. Similary if $B \subseteq A$, then $B \subseteq I$.Thus I is prime Γ-ideal of M . The converse is obvious.

References

[1].Jaya Lalitha.G.,Dr.Y.Sarala.,Dr.Madhusudhana Rao,"A note on right ideals of ordered semigroups", Global Journal of pure and applied Mathematics, ISSN 0973-1768,Vol-10, No. 5 (2014).pp.707-710
[2].Suthin Thongrak and Aiyared Iampan,"Characterizations of ordered semigroups by the properties of their ordered (m,n)quasi-ideals", Palestine journal of mathematics,Vol-7(1) 2018,299-306
[3].A.Iampan,"Characterizing ordered bi-ideals in ordered Γ-semigroups", Iranian journal of Mathematical sciences and informatics,vol-4.no.1(2009).pp.17-25.
[4].A .Iampan,"Characterizing ordered quasi-ideals of ordered Γ-semigroups",Kragujevac journal of mathematics,vol-35.no 1(2011).pp.13-23
[5]. Ze Gu," On bi-ideals of ordered semigroups", Quasigroups and Related Systems 26(2018),149-154
[6].Sza`sz.G,Eine Charakteristik der primidealhalbgruppen,Publ.math.Debrecen 17(1970),209213
[7].Niovi Kehayopulu,On prime,weakly prime ideals in ordered semi groups,Semi group Forum,Dec-1992,Vol-44,Issue 1,pp.341-346.
[8].N.Kehayopulu, On weakly prime ideals of ordered semigroups, Math.Japan. 35 (1990), no.6,1051-1056.

