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Abstract- Public health is still threatened by food safety. Large, newly available data sets may be used by 

machine learning to enhance food supply safety and lessen the effects of food safety events. genomes of 

food borne pathogens and new data streams, such as transactional, text, and trading data, have observed new 

uses made possible by machine learning strategy, like the forecasting of antibiotic resistance, the attribution 

of sources to pathogens, risk assessment, and the identification of foodborne outbreaks. Within this In this 

post, we give a thorough introduction to machine learning with a focus on food safety, along with a 

summary of current advancements and uses. Despite the fact that many of these applications are still in their 

infancy, general and domain-specific machine learning pitfalls and challenges are starting to be identified 

and addressed. These developments are crucial for the potential use and future deployment of large data sets 

and the machine learning models that go along with them for food safety applications. 
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INTRODUCTION 

The phrase "machine learning" was first used by Arthur Samuel (1959, p. 211) to describe how a computer 

could learn to play and win at checkers in a fashion that "if done by human beings or animals, would be 

described as involving the process of learning." Later, Samuel's concept was expanded to include the field 

of study that develops artificial intelligence (AI) in computers without requiring explicit programming. Its 

application dates back to the early 1700s, when sailors needed assistance navigating the ocean, astronomers 

and geodesists developed least-squares methods to describe planetary orbits based on measurements (data) 

(Stigler 1986). The theory and tools of modern machine learning were blueprinted by visionaries like Alan 

Turing after World War II (Turing 1950). Some of the most widely used algorithms and models, such as 

nearest neighbors, random forests, and neural networks, were invented between the 1960s and the 1990s. 

After the term Big Data was popularized in both the scientific community and the general public around the 

1990s and 2000s, the explosive growth of machine learning benefited from vastly increasing data sizes, 

exponentially growing computer power, and new refinements of old tools, eventually leading to a myriad of 

breakthroughs. Notable milestones include recognition of handwritten digits (LeCun et al. 1989) and speech 

(Hochreiter & Schmidhuber 1997); classification of objects such as cats, dogs, and planes (Krizhevsky et al. 

2012); and mastery of gameplay without human knowledge in the game of Go (Silver et al. 2017). As a 

subfield of artificial intelligence, machine learning differs from traditional algorithmic problem-solving by 

not attempting to program an exhaustive list of explicit instructions or rules. Instead, a machine learning 

system learns from examples and generalizes to new cases based on their closeness to learned examples 

(instance-based learning) or trains a model with data to learn its parameters through optimization and makes 

predictions using new (test) data (model-based learning). The data-driven and rule-agnostic characteristics 

of machine learning make it attractive for certain types of tasks. First, for problems that are difficult to pose 

mathematically (Shardanand & Maes 1995) or without explicit solution algorithms, machine learning may 

find a reasonable approximation. Second, some problems are so complex for existing methods that a 

prohibitively long list of rules would need to be programmed for their solutions. For example, for the game 

of Go, it is combinatorically unrealistic to find the optimal move through a brute-force search. Third, some 

tasks must cope with new data to which hard-coded rules are impossible to adapt, such as detecting novel 
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spam in emails and on social media. Finally, machine learning can provide insights and verify heuristics on 

large-scale problems, such as the Go strategies and tactics innovated and rediscovered by DeepMind’s 

AlphaGo (Baker & Fan 2017) 

LITERATURE REVIEW 

Foodborne infections continue to pose a serious and persistent threat to public health. According to Scallan 

et al. (2011), foodborne illness affects 48 million Americans, or 1 in 6 of the population, and results in 

128,000 hospital admissions as well as 3,000 fatalities annually. Food safety was identified as a focus area 

in the 2020 vision released by the US Healthy People initiative in 2010 (Koh 2010). As of 2019, the 

Foodborne Diseases Active Surveillance Network (FoodNet) surveillance data showed that none of the 

vision's goals for controlling six key foodborne pathogens by 2020 had been achieved. Over more than a 

century, major transformations in food production, distribution, and regula�tion have taken place, driven by 

and feeding into macrosocietal trends such as population increase, urbanization, and globalization (Doyle et 

al. 2015, Phillips 2006). Massive changes and advances in the food industry and supply chains have 

generated large volumes of data, especially in recent years, similar to in other sectors and industries. A 

plethora of data has been explored in inno�vative ways and at different stages along the farm-to-table 

continuum to improve the safety of the food supply. For instance, at preharvest, terrain and meteorological 

data were investigated for predicting pathogen contamination on produce farms (Strawn et al. 2013), and in 

the retail set�ting, paperless auditing and record keeping enabled 1.4 million monthly measurements of 

internal cooking temperatures of rotisserie chickens for food safety assurance (Yiannas 2015). At the end of 

the food supply chain, consumer interactions with foods, including transaction, consumption, and 

experience feedback and sharing, also create copious amounts of data. These novel data streams (NDS) are 

increasingly propagated and accessible via digital platforms such as social media, search histories, 

crowdsourcing sites, and consumer reviews and commentary, as well as databases of product sales and 

consumption records. Mining of these data to inform food safety and public health is on the horizon (Harris 

et al. 2014, Maharana et al. 2019). On the surveillance front, data-intensive systems play important roles in 

tracking foodborne illness cases and agents. Examples at the US federal level include PulseNet 

(Swaminathan et al. 2001), the National Antimicrobial Resistance Monitoring System (NARMS) (Gupta et 

al. 2004, Zhao et al. 2006), FoodNet (Scallan & Mahon 2012), and the National Outbreak Reporting 

Sys�tem (Hall et al. 2013). Data collected by some of these systems have surged in the recent decade owing 

to the incorporation of genomic data on foodborne pathogens. Implementation of whole�genome 

sequencing (WGS) in surveillance and outbreak investigation has fueled an explosion of publicly available 

foodborne pathogen genomes in new systems such as GenomeTrakr (Allard al Center for Biotechnology 

Informa�tion’s Pathogen Detection (https://www.ncbi.nlm.nih.gov/pathogens). Routine use of WGS in 

public health microbiology has given rise to a data-driven area known as genomic epidemiology (Deng et al. 

2016). Recent advances in the data science approach to food safety have led to the discussion of Big Data 

(Marvin et al. 2017), a term that is not traditionally associated with food safety. To meet analytical 

challenges created by the deluge of data, machine learning has emerged as a promising tool for data-

intensive analytics in food safety. In April 2019, the Food and Drug Administration (FDA) released a 

statement on “steps to usher the US into a new era of smarter food safety,” in which artificial intelligence 

and machine learning applications in food safety were proposed (Sharpless & Yiannas 2019). Given the 

rapid emergence of machine learning applications in food safety, we aim to pro�vide a comprehensive 

overview of the new field by introducing fundamentals of the methodology, reviewing recent and notable 

progress, and discussing challenges and potential pitfalls. Machine learning, as a general-purpose data 

analytics tool, has been used in other areas of agricultural and food science, such as food processing and 

quality evaluation, as reviewed elsewhere (Du & Sun 2006). In this review, we focus on domain-specific 

applications in food safety and public health. 
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MACHINE LEARNING METHODS 

 During training, machine learning systems may receive guidance or supervision. Based on the amounts of 

supervision provided, the learning can be categorized into supervised, unsupervised, semi-supervised, and 

reinforced.  

(i) In typical supervised learning tasks, such as classification and regression, the training data fed to the 

learning system are labeled with the desired outcome or the ground truth. To build a cat/dog classifier, a 

training set of many pet images must be assembled and labeled with the classes: cats, dogs, or neither. To 

develop a regressor that predicts a continuous numeric value, such as housing prices given a set of features 

(e.g., neighborhood, size, year built), many instances of houses are collected to fit a regression model, each 

including both features and a label: its price.  

(ii) In unsupervised learning, training data are unlabeled, leaving the algorithm to unearth the hid�den 

patterns. An example is the identification of customer groups through behavioral/transactional data without 

an a priori defined grouping. Another important application is anomaly and novelty detection. For example, 

a learning system shown mostly normal network traffic can learn to detect cyber intrusions.  

(iii) Labeling of data can be labor intensive and is not readily available for large data sets. There are often 

few labeled instances among many unlabeled examples. As a combination of supervised and unsupervised 

learning, semi-supervised algorithms can weigh in on unlabeled data’s contribution to feature-target 

relations, usually taking advantage of the assumption that nearby samples are likely to share the same labels 

(Zhu et al. 2003). For example, in automatic speech recognition, accented speech is commonly 

underrepresented in training data and problematic for supervised learning. Semi-supervised learning of tone 

and pitch accent has been shown to reduce the need for labeled training data for speech recognition (Levow 

2006).  

(iv) Unlike supervised learning, in which training data comes with specific answers to the question (class 

labels), reinforcement learning relies on a learning system (agent) to find the best strategy or path (policy) in 

a given situation. The learning is achieved through a trial-and-error process during which the agent is 

rewarded or penalized by the actions it takes, with the goal of maximizing the reward over time. 

Reinforcement finds plenty of use in robotics and gaming, from robots learning to walk (Haarnoja et al. 

2018) to the AlphaGo program beating the world Go champion (Silver et al. 2017). 

 

EXAMPLES OF ALGORITHMS 

Numerous machine learning algorithms have been developed that vary in sophistication to accom�modate 

problems of different levels of complexity. Four representative and fundamental learning algorithms are 

summarized in Figure 1. K-means is an unsupervised algorithm that partitions similar observations into 

clusters dynamically. It uses geometric centers of observations (centroids) to prototype clusters, and an 

observation is then assigned to a cluster if it is closer to the cluster’s centroid than any other centroid (Figure 

1a). A support-vector machine (SVM) uses planes to best separate observations of different classes by 

representing them as points. A new observation is mapped onto the space, and its class is pre�dicted 

according to the side of the plane on which it falls. SVM is particularly efficient for data in which different 

classes are well separated (Figure 1b). Decision trees (Figure 1c) attempt to split instances into different 

classes recursively through the interaction of different features. A new sample follows particular branches 

determined by the features to land on a leaf that provides its predicted class. It is possible to randomize this 

approach through averaging the results from a multitude of different trees (random forest) and to grow trees 

by following a more quantifiable criterion through the introduction of an objective function (gradient 

boosting). Both methods are examples of ensemble learning. An artificial neural network (ANN) simulates 

biological neural networks by comprising layers of interconnected artificial neurons called processing units 
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(Figure 1d). These units or nodes receive input information and process it through a system that includes a 

linear combination of weights and input, a nonlinear activation function, and output signals to the next layer 

of nodes. Each ANN consists of one input layer, one or more intermediate layers called hidden layers, and 

one output layer. Together, they convert initial inputs into results for regression or classification tasks. An 

ANN containing many hidden layers is called a deep neural network, which is the core of deep learning. 

 
Figure 1- Examples of machine learning models. (a) A decision boundary plot of k-means clustering with three clusters, 

with new samples being grouped to a cluster by the colored region it lands on. (b) A line dividing two classes in a support-

vector machine with a certain margin. w contains the trainable parameters, and x stands for the vector representation of a 

sample. (c) A decision tree with five features. A sample is classified into a certain class following the red arrow. (d) A 

neural network with two hidden layers; the arrow stands for a connection between units, with transparency indicating the 

connection strength 

 

MACHINE LEARNING APPLICATIONS USING GENOMIC DATA 

 In genetics, genomics, and medicine, machine learning holds promise for making biological dis�coveries 

and predictions from large genomic data sets.Machine learning models have been trained to recognize 

patterns and elements in DNA sequences, a process known as sequence annotation (Libbrecht & Noble 

2015). Genomic signatures or biomarkers have been identified via machine learning techniques to assist in 

disease diagnosis, clinical decision-making, and drug discovery and development (He et al. 2019, 

Vamathevan et al. 2019). One could assume that machine learning analysis of foodborne pathogen genomes 

is an iteration or extension of established methodology and therefore straightforward owing to the relatively 

small genomes of the pathogens. However, domain-specific opportunities and challenges continue to arise 

as machine learning is increasingly used to tap into the rapidly growing resources of foodborne pathogen 
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genomes and their meta�data. Still in their infancy, such applications have been focused on antimicrobial 

resistance (AMR) prediction and genomic source attribution of certain pathogens. 

(i) Antimicrobial Resistance Prediction- Measurement of antimicrobial resistance or susceptibility 

traditionally relies on phenotypic assays that measure growth inhibition of an antibacterial agent on a 

population of pure culture bacte�ria. A common technique for antimicrobial susceptibility testing (AST) is 

broth dilution, which involves a range of antibiotic concentrations and determines the minimum inhibitory 

concentra�tion (MIC) of a drug to inactivate or inhibit the growth of a particular bacterial isolate. Clinical 

breakpoints are assigned to divide AST results into categories in correlation with the likelihood of treatment 

outcome, including susceptible (high probability of a favorable outcome), resistant (low probability of a 

favorable outcome), and sometimes intermediate (Humphries et al. 2019, Turnidge & Paterson 2007). 

(ii) Genomic Source Attribution of Foodborne Pathogens- According to the Centers for Disease Control 

and Prevention, approximately 95% of foodborne illnesses in the United States are sporadic, non-outbreak 

cases whose food exposures and con�tamination sources are challenging to determine. With source 

information for most foodborne infections being largely unknown, it is difficult to understand foodborne 

illness epidemiology and develop intervention measures to prevent and mitigate such illnesses.Major 

foodborne pathogens, such as Salmonella and E. coli, are zoonotic enteric bacteria whose primary reservoirs 

include live�stock and wild animals. Unlike AMR, for which many genetic determinants have been 

identified and characterized, mechanistic understanding of zoonotic host specificity and tropism is still 

lim�ited. The lack of genetic markers prevents a rule-based approach to source prediction but creates an 

opportunity for machine learning investigations that do not necessarily require a priori knowl�edge of 

genetic determinants of bacterial host preference or adaptation. 

(iii) Challenges and Potential Pitfalls of Machine Learning Applications in Food Safety Using 

Genomic Data- AST and source attribution represent related but different types of phenotypic inference 

from genomic data. When machine learning inference is intended to identify genetic variations causally 

associated with specific phenotypes, it can be considered as a subset of microbial genome-wide association 

studies (mGWAS). Adapted from GWAS methods used in human genetics, mGWAS face challenges and 

pitfalls specific to bacterial species, including genome-wide linkage disequi�librium and strong population 

structuring, such as distinct lineages and clonal groups (Eyre et al. 2017, San et al. 2019). Such genetic and 

population traits can lead to identification of genotype– phenotype associations that are correlational but not 

causal. The still-nascent use of machine learning in food safety genomics has only begun to consider such 

challenges and pitfalls, either during feature selection (Lupolova et al. 2019) or at results confirmation 

(Drouin et al. 2016). 

CONCLUSION 

Although there aren't many exciting uses of machine learning with NDS in the field of food safety now, 

there are many that could be modeled after related fields. As Kaufman et al. (2014) pioneered using retail 

sales data, loyalty cards (Aiello et al. 2019), restaurant sales, online grocery (Huyghe et al. 2017) or delivery 

(Schulz et al. 2019) data sets, which have been used in consumer behavior and nutrition applications, could 

be applied to identify likely outbreak food vehicle sources. Additional data, such as product-specific 

characteristics (e.g., shelf life, probable consumption date, the likelihood that a specific product contains a 

particular pathogen), or variables influencing the purchase of specific items (e.g., weather, holidays, 

sporting events), features frequently used in retail consumption demand forecasting models, could be added 

to the prediction task. Markets and restaurants are examples of places where contaminated products may 

have been purchased. Aggregated credit card transactions, which have been used to construct machine 

learning models of consumer shopping trajectories (Krumme et al. 2013, Singh et al. 2015), could be 

utilized to identify locations. There are numerous uses for location data from smartphone applications or cell 

phone call data records in researching the transmission of infectious diseases from person to person (Oliver 

et al. 2020). However, there are currently few examples of foodborne disease applications (Sadilek et al. 
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2017, Teyhouee et al. 2017). Strategies utilizing social media and search queries could be extended beyond 

the surveillance of foodborne illnesses to encompass other aspects of food safety such as product recalls, 

allergies, or food safety laws. 
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