
 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Sp.Iss 6 , 2022

269

On Device efficient prediction model for detection of jank using DNN models

S. Sagar Imambi
1

1
Professor, Dept. of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Green fields,

Guntur, Andhra Pradesh, India -522302

M. Krishna Vamsi
2
, Shaik Riyaz Basha

3

2,3
 Dept. of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Green fields, Guntur, Andhra

Pradesh, India -522302

DOI : 10.48047/IJFANS/11/S6/035

Abstract

Android produces UI by producing and presenting a frame from a mobile app on the screen. If

the app's UI rendering is slow, the system is forced to skip frames. When this occurs, the user

notices a repeated flicker on their screen, which is known as Jank. Jank issues can manifest in

various forms, causing disruptions such as unstable frame rates, heightened latency,

AppDeadlineMissing, and BufferStuffing. BufferStuffing occurs when the app runs beyond its

expected duration, leading to jank. To quantify this issue, we determine the total time taken by

the app frame, commencing with the choreographer wake-up as the starting point and

concluding with max(GPU, post time) as the endpoint. Post time represents when the frame was

dispatched to SurfaceFlinger. Notably, due to the parallel operation of the GPU, the GPU can

complete its task after the post time. This situation is more of a state than a true jank occurrence

and typically arises when the app continually dispatches new frames to SurfaceFlinger before

the previous frame has been presented. This continuous influx of frames leads to the stuffing of

the internal Buffer Queue with frames yet to be presented, hence the term "Buffer Stuffing."

These additional buffers in the queue are presented one after the other, resulting in increased

latency. This can eventually reach a point where there are no more buffers available for the app

to utilize, leading to a blocking wait during dequeuing. Importantly, even if the actual work

performed by the app remains within the deadline, the stuffed nature of frames leads to their

presentation at least one vsync late, introducing elevated input latency. While the visual

appearance of frames may remain relatively smooth in this state, the late presentation is

associated with increased input latency. In this work, the LSTM Model(Long Short Term

Memory) was used for the detection of Jank. LSTMs provide us with a large range of

parameters such as learning rates, and input and output biases. Hence, no need for fine

adjustments. Experimental result shows that the LSTM Model was able to predict the frame

drop with an efficiency of 98% thereby enhancing the overall user experience.

Keywords: Andriod, CNN, Frame drop, Jank, LSTM, RNN,

1. Introduction

Many factors influence the cause of jank during UI rendering which can be categorized as

internal factors like large inflates, animations, layouts, etc., and external factors like CPU/GPU,

Battery, Touch inputs(by user), etc. A sophisticated Learning-based model is required to predict

the jank occurrence in real time for smooth performance, To avoid jank and sluggish

responsiveness when an Application is drawing to the screen by predicting the next frame drop

and taking corresponding actions. This work aims to develop a learning model to predict the

 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Sp.Iss 6 , 2022

270

next frame drop that can occur on a smartphone while the user is using the application. This

model works as a Generic model for all the scenarios (scroll, app switching).

1.2 Type of janks

AppDeadlineMissed

A jank was caused by the application running longer than planned.

To determine the length of the application, wakeup is used as the start time,

and maximum (GPU, streaming time) is used as the end time.

The frame's post time is when it was dispatched to SurfaceFlinger. Given that the

GPU often works concurrently, there's a chance that it experienced unexpected delays in

completing its tasks.

BufferStuffing:

This is more of a situation than a performance issue. It happens when an

application continually sends new frames to SurfaceFlinger before the previous frame

has a chance to be shown. The term "buffer stuffing" describes the situation where the

core buffer queue becomes overwhelmed with unprocessed buffers that rarely get

displayed.

SurfaceFlingerCpuDeadlineMissed

SurfaceFlinger is anticipated to be completed within the time frame specified.

SurfaceFlingerCpuDeadlineMissed is the jank if the main thread operated for a

prolonged period. The amount of CPU time devoted to SurfaceFlinger's main thread. If

device composing was employed, the full composition period is included. This includes

the duration required for generating the draw calls and transferring them by hand. the

frame off to the GPU if GPU composition was employed.

SurfaceFlingerGpuDeadlineMissed

SurfaceFlinger's main thread's CPU and GPU composition times combined took

longer than anticipated. Here, the CPU time would still have been inside the allotted

period, however, due to the GPU task not being finished promptly, the frame was

postponed to the subsequent vsync cycle.

 DisplayHAL

When SurfaceFlinger completes its task and promptly sends the frame to the HAL,

the situation is known as a "DisplayHAL jank," However, the frame is not shown during

the vsync event. It was displayed on the following vsync. It's possible that SurfaceFlinger

did not provide enough time for the HAL's work, or it's possible that the work of the HAL

was delayed.

This article also provides a thorough overview of the various techniques and strategies

used in developing on-device efficient prediction models for jank detection, highlighting

CNN with LSTM as a potential solution. It examines the benefits of CNNs in capturing

intricate patterns in user interactions and system behaviors, with an emphasis on their

ability to provide exact and timely jank predictions.

 CNNs can easily incorporate query features and item features (due to the flexibility

of the input layer of the network), which can help capture the specific interests of a user

and improve the relevance of recommendations. The LSTM model was forecasted with the

time-series log file data for a long lead period for the various applications of Android

mobile phones.

 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Sp.Iss 6 , 2022

271

The model architecture determines the complexity and expressivity of the model.

By adding hidden layers and non-linear activation functions (for example, ReLU), the

model can capture more complex relationships in the data.[4,5. Expanding the parameter

count generally results in a more challenging and costlier model training process.

 2. Survey of literature

 2.1 Mobile Jank Prediction:

The present disclosure relates to methods and apparatus for frame processing. The

apparatus can determine a current frame offset duration when a current frame

rendering completion time is after the first VSYNC time. In some aspects, the current

frame offset duration can be equal to a difference between the first VSYNC time and

the current frame rendering completion time. The apparatus can also determine

whether the sum of a previous frame GPU execution duration and the current frame

offset duration is less than or equal to a first VSYNC period. In some aspects, the first

VSYNC period can begin at the first VSYNC time and end at a second VSYNC

time.[9] Additionally, the apparatus can execute a current frame based on the

determination of whether the sum of the previous frame GPU execution duration and

the current frame offset duration may be equal or low to the first VSYNC period.

2.2 LSTM Sequence Generation:

. Recurrent Neural Networks (RNNs) have proven to be effective in addressing tasks

involving sequential predictions. This work aims to create a generative model for text.

Even though, RNN has its limitations such as vanishing and exploding gradient descent

problems, and inefficiency in keeping track of long-term dependencies. To overcome

these drawbacks, Long Short Term Memory (LSTM) has been a path-breaking solution

to deal with sequential data and text data in particular. This paper delineates the design

and working of text generation using word-level LSTM-RNN.[1]

The LSTM neural network is an Encoder-Decoder built on a bidirectional

multilayer architecture where the input sequence to the encoder is a list of user dialogue

acts and the decoder output sequence is a list of system dialogue acts. All dialogue acts

are defined at the intent level and are extracted from the Town Info corpus for tourist

information provided by the FP7 Classic Project funded by the European Union. In their

study, the LSTM configuration they proposed was pitted against a fully connected

Hidden Markov Model (HMM) architecture. In this HMM model, user dialogue acts

serve as states, and system dialogue acts serve as observations [11]. Following a series

of diverse experiments, the findings collected from the analysis of the Town Info corpus

 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Sp.Iss 6 , 2022

272

unequivocally demonstrated that the LSTM-based system surpassed the HMM-based

system in terms of performance.

3. Methodology

 Data Collection and Data PreProcessing:

The dataset containing the time stamps of several frames was taken from our mentors

and we used the pandas library to pre-process the data, There are a couple of problems

with the raw data. Firstly, the Time and Amount columns exhibit significant variability,

making them unsuitable for direct use. As a solution, omit the Time column, as its

meaning is unclear, and apply a logarithmic transformation to the Amount column to

narrow its range.

Fig1. junk frames in Android mobile

Building Model:

Built a stacked LSTM model for the detection of jank, Stacking LSTM to allow for

greater model complexity. In the case of a simple feedforward net, we stack layers to

create a hierarchical

feature representation of the input data to then use for some machine learning task. The

same applies to stacked LSTMs. At every time step an LSTM, besides the recurrent

input. If the input is already the result of an LSTM layer (or a feedforward layer) then the

current LSTM can create a more complex feature representation of the current input.

 Train and Test:

Split the dataset into train, validation, and test sets. The validation set is used

during the model fitting to evaluate the loss and any metrics; however, the model

does not fit with this data. The test set is completely unused during the training

phase and is only used at the end to evaluate how well the model generalizes to

new data. This is especially important with imbalanced datasets where overfitting

is a significant concern due to the lack of training data.

https://developers.google.com/machine-learning/crash-course/generalization/peril-of-overfitting

 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Sp.Iss 6 , 2022

273

 Predict:

After testing the model with 20% of the data, using the same testing data to predict

the frame drop. Compared the results between the LSTM model and t h e DNN

program, from which 94% of the prediction was accurate.

To predict the frame drop we used two different methods DNN and LSTM.Used

the Pandas Python library to download CSVs into a Pandas Data Frame. Pandas

has many helpful utilities for loading and working with structured data.

The use of the LSTM (Long Short Term Memory) Model helps in detecting jank

by predicting frame drops in real time. Jank refers to the repeated flickering on the

screen caused by slow UI rendering. When the system is forced to skip frames due

to slow rendering, it leads to problems like unstable frame rate and increased

latency.

The LSTM model, a variant of recurrent neural networks (RNNs), is tailored for

processing sequential data and capturing extended temporal relationships. In the

context of jank detection, the LSTM Model is trained on a dataset containing time

stamps of frames. It learns the patterns and characteristics of frames that are likely

to be dropped or cause jank.

The LSTM model uses system features like CPU usage, memory usage, and frame

rate to forecast frame drop occurrences. It considers the historical patterns in the

input data sequence and adjusts its internal state by incorporating both the current

input and prior states.[2,6]

These three parts of an LSTM cell are known as gates. The first part is called

Forget gate, the second part is known as the Input gate and the last one is the

Output gate.

Fig 2 LSTM architecture

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame

 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Sp.Iss 6 , 2022

274

3. 2 Algorithm:

Step1:Input Data Representation

 Let X(t) be the input data at time step t, representing the features extracted from the s

system (e.g., CPU usage, memory usage, frame rate).

 Let Y(t) be the output variable at time step t, representing the presence or absence of

jank (1 for jank, 0 for non-jank).

Step 2: DNN Model:

 Apply a DNN model to process the data input X(t) at each time step t

 The DNN model can have multiple hidden layers with appropriate activation functions

(e.g., sigmoid, ReLU) to capture complex relationships between the input features.

Step 3: LSTM Model:

 Apply an LSTM model to capture temporal dependencies in the input data sequence.

The LSTM model takes the output of the DNN model at each time step t as input and

updates its internal state based on the current input and the previous state. The LSTM

model can incorporate multiple layers of LSTM units, each equipped with suitable

activation functions such as sigmoid and tanh, enabling it to acquire and model long-term

dependencies in data.

Step 4: Output Layer:

 Apply a fully connected layer with a suitable activation function (e.g., sigmoid, softmax)

to obtain the predicted probability of jank at each time step t.

Step 5: Loss Function:

Define a suitable loss function (e.g., binary cross-entropy) to assess the difference between

the predicted probability and the actual jank label Y(t) at each time step t. The

dissimilarity between the anticipated output and the realized output is quantified by a loss

function, such as mean squared error or cross-entropy.

Step 6: Backward Propagation:

Compute the gradients of the cost function concerning the model parameters (including

both DNN and LSTM parameters) using backpropagation through time. Update the

model parameters using an optimization algorithm (e.g., gradient descent, Adam) to

minimize the cost function.

4. Experimental Results and Discussion

We used the dataset containing information about all the processes of GPU and the

data such as unknown delay duration, Input handling duration, Animation

Duration, Layout measure duration, and so on. To find the best model to predict

the jank frame, hyperparameters of both DNN and CNN are modified and the

corresponding performances are tabulated.

 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Sp.Iss 6 , 2022

275

 4.1 Data set

Fig 3: Sample data

The total size of the data set DS_MB is 2000 instances gathered from the devices. Another

data set DS_AD from the Android devices contains 4200 instances. The data is divided into

train and test data sets after preprocessing and normalization. 60 time stamps are used for the

LSTM model.

Table 1:Configuration of data sets

 Train test
DS_MB 1400 600
DS_AD 2940 1260

4.2 Configurations of Convolutional Neural Networks :

The CNN model is built using LENET as the base model. The learning rate is initialized as

0.01. The number of epochs is set to 150 for the CNN model. Stochastic Gradient Descent

(SGD) is employed to optimize the model's loss function, while 20% of the training data is

designated for validation purposes. Table 2 represents the results produced by the system with

CNN and LENET as a classifier.

 Table 2:Accuracy of the CNN model

model Optimizer accurac
y

CNN ADAGRADE 84.5
CNN SGA 85.8.
LENET ADAGRADE 85.2
LENET SGA 87.4

Table 3:Confusion matrix for the CNN model

 Dropped Not
Dropped

Dropped 1088 260
Not Dropped 52 600

4.2 Configurations LSTM Neural Networks :

The RNN and LSTM models are defined using 30 and 60 time stamps. The learning rate is

initialized as 0.01. The number of epochs is set to 150 for the CNN model The SGD is used

 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Sp.Iss 6 , 2022

276

to optimize the loss function of the model 20% of training data is considered as the validation

data.

Table 4 represent the results produced by the system with RNN and LSTM as classifier by

varying time stamps

 Table 4:Accuracy of the CNN model

model timestamps accurac
y

LSTM 60 94.7
LSTM 30 92.6
RNN 60 88.5
RNN 30 86.4

 When comparing the experimental findings, it becomes evident that the LSTM Model

19 exhibits exceptional efficiency in predicting frame drops, achieving an accuracy rate

of 94.7%. It is represented in table 5. This prediction capability enhances the overall

user experience by allowing for proactive measures to be taken to avoid jank and ensure

smooth performance during UI rendering on Android devices.

Table 5: comparison of the models

 Accuracy Precision Recall
CNN 85.8 85.8 82.4
RNN 88.5 86.5 85.8

LSTM 94.7 94.1 93.8

5. Conclusions

This research work focuses on the development of on-device prediction

models for efficient jank detection, leveraging Convolutional Neural Networks

(CNNs) and Long Short-Term Memory (LSTM) networks. The study explores the

application of these deep learning techniques in identifying and mitigating jank

issues, with an emphasis on optimizing real-time performance and resource

efficiency. The research aims to enhance the overall user experience by addressing

jank-related problems in mobile applications. The experimental results indicate that

the LSTM Model excels in accurately predicting frame drops, achieving an

impressive accuracy rate of 94.7%

This prediction capability enhances the overall user experience by allowing

for proactive measures to be taken to avoid jank and ensure smooth performance

during UI rendering on Android devices.

References

1. Hochreiter, S. and Schmid Huber, J. (1996). Bridging a long time lags by weight

guessing and "Long Short-Term Memory". In Silva, F. L., Principe, J. C., and Almeida,

 IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
 Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Sp.Iss 6 , 2022

277

L. B., editors, Spa Tio temporal models in biological and artificial systems, pages 65-72.

IOS Press, Amsterdam, Netherlands. Serie: Frontiers in Artificial Intelligence and

Applications, Volume 37.

2. Irwan Bell et al(2021) Revisiting ResNets: Improved training and scaling strategies.

Advances in Neural Information Processing Systems (NeurIPS), vol .34,

3. L. Ekonomou, “Greek long-term energy consumption prediction using artificial neural

networks,” Energy, vol. 35, no. 2, pp. 512-517, 2010.

4. Lang, K., Waibel, A., and Hinton, G. E. (1990). A time-delay neural network

architecture for isolated word recognition. Neural Networks, 3:23-43. Miller, C. B. and

Giles, C. L. (1993). Experimental comparison of the effect of order in recurrent neural

networks. International Journal of Pattern Recognition and Artificial Intelligence.

5. Levada, Alexandre LM, et al. ”Novel approaches for face recognition: template-

matching using dynamic time warping and LSTM Neural Network Supervised

Classification.” 2008 15th International Conference on Systems, Signals and Image

Processing. IEEE, 2008.

6. Manekar, A., & Pradeepini, G. (2021). Optimizing cost and maximizing profit for multi-

cloud-based big data computing by deadline-aware optimize resource allocation.

In Recent Studies on Computational Intelligence: Doctoral Symposium on

Computational Intelligence (DoSCI 2020) (pp. 29-38). Springer Singapore.

7. Ota, Kaoru, et al.(2017) "Deep learning for mobile multimedia: A survey." ACM

Transactions on Multimedia Computing, Communications, and Applications

(TOMM) 13.3s pp: 1-22.

8. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,

no. 8, pp. 1735–1780, 1997.

9. Selouani, S. A., & Yacoub, M. S. (2018,). Long short-term memory neural networks for

artificial dialogue generation. In 2018 IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC), Vol. 1, pp. 761-768

10. V. Polepally, et al(2021) "A Deep Learning Approach for Prediction of Stock Price

Based on Neural Network Models: LSTM and GRU," 2021 12th International Conference

on Computing Communication and Networking Technologies (ICT), Kharagpur, India, pp. 1-4

