
IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Iss 9, 2022

3676

Bandwidth-Aware Hadoop Scheduling Method for Enhanced Task Execution

M.Maria Sampoornam, K.Sindhuja, K.Rajaprabu

Assistant Professor, Department of Information Technology, J.J. College of Engineering and Technology,

Trichy, Tamilnadu

Assistant Professor, Department of Information Technology, J.J. College of Engineering and Technology,

Trichy, Tamilnadu

Assistant Professor, Department of Information Technology, J.J. College of Engineering and Technology,

Trichy, Tamilnadu

DOI:10.48047/IJFANS/11/9/356

Abstract:

This research presents a novel bandwidth-aware Hadoop scheduling method that addresses the challenge

of task scheduling in Hadoop clusters while considering the real-time network conditions. The proposed

method involves the establishment of a job time completion model and a mathematical model for a Hadoop

scheduling system. Furthermore, it transforms the Hadoop task scheduling problem into an optimization

problem to find the task scheduling method that minimizes job completion time. By leveraging Software-

Defined Networking (SDN) capabilities, a time slot-based network bandwidth allocation mechanism is

introduced to allocate bandwidth fairly across network links. The proposed method also takes into account

task locality and network bandwidth availability when allocating computational nodes for individual tasks.

Through this approach, the limitations of existing methods, which fail to simultaneously consider global

task scheduling and actual network bandwidth availability, are overcome. Experimental evaluations

demonstrate the effectiveness of the proposed method in enhancing the performance of Hadoop task

scheduling.

Keywords: Hadoop scheduling, bandwidth-aware, task completion model, mathematical model,

Software-Defined Networking (SDN), network bandwidth allocation, task locality, computational node

allocation, optimization problem.

Introduction

In the era of big data, Hadoop has emerged as a popular framework for processing large-scale datasets.

Efficient task scheduling is crucial to optimize the performance and resource utilization in Hadoop clusters.

However, existing scheduling methods often overlook the dynamic nature of network conditions, resulting

in suboptimal task execution and increased job completion time. To address these limitations, this research

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Iss 9, 2022

3677

proposes a bandwidth-aware Hadoop scheduling method that leverages SDN capabilities to allocate

network bandwidth effectively and considers task locality for efficient computational node allocation. This

paper presents the steps involved in the proposed method and outlines its contributions to improving

Hadoop task scheduling.1

Background

In recent years, with the rapid development of internet technology and the emergence of WEB2.0, there has

been a significant transformation in the online landscape. One notable characteristic of WEB2.0 is the

abundance of user-generated content, leading to a substantial growth in data volume. In the face of this

challenge, cloud computing has emerged as a new paradigm for processing large-scale data. Leveraging

distributed and virtual technologies, cloud computing offers a novel approach to handle massive data

processing tasks.2,3

Currently, the majority of cloud computing systems worldwide are based on the MapReduce computation

model and distributed file storage systems, inspired by Google's core cloud computing technologies.

However, Google being a commercial company, it is not feasible to gain detailed insights into their internal

workings. Therefore, individuals or research groups interested in furthering cloud computing research and

development lack a comprehensive understanding.4 This gap has been partially filled by the Hadoop system,

which was introduced as an open-source project by the Apache Foundation in 2005. Initially derived from

the Nutch project, Hadoop adopts the design principles of Google's cloud computing core technology. It

provides an open framework for supporting the operation of large-scale data processing applications.5

The core components of Hadoop include the Hadoop Distributed File System (HDFS) and the MapReduce

programming framework. HDFS serves as the distributed file system, similar to Google File System (GFS),

enabling file read-write and transmission operations within the cluster. MapReduce facilitates distributed

computing in the cluster and leverages the file processing capabilities provided by HDFS to enable task

initialization, scheduling, and execution.6,7

One of the significant advantages of Hadoop is its ability to be deployed on inexpensive commodity

hardware clusters, eliminating the need for supercomputers. Hadoop encapsulates the complexity of its

underlying implementation details, providing a stable API interface for developers to build applications on

top of it. This abstraction shields developers from the intricacies of parallel data processing, such as data

partitioning, backup scheduling, fault tolerance, and cluster monitoring. By focusing on the core program

logic and application development, developers can significantly reduce the implementation burden and

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Iss 9, 2022

3678

enhance efficiency. Moreover, to enhance the user-friendliness of the Hadoop framework, the growing

Hadoop ecosystem provides comprehensive fault-tolerant capabilities at the application layer. This enables

independent handling of potential failures occurring in each node of the cluster during job execution. The

stable, cost-effective, and efficient nature of the Hadoop development framework has gained widespread

attention and adoption, finding applications in various domains such as search engines, e-commerce data

mining, advertisement marketing analysis, biological information analysis, and web log file storage.8

Despite the widespread adoption of Hadoop as a popular cloud computing platform, it is relatively young,

having been released by the Apache Foundation only a few years ago. Although it has gained attention from

academia and industry, there is still a need and potential for further improvement. One critical aspect

requiring attention is task scheduling, which plays a vital role in the Hadoop system. Task scheduling is

responsible for dispatching computational resources and managing job execution. The scheduling decisions

directly impact the performance and resource utilization efficiency of the Hadoop system. However, current

job scheduling algorithms still face challenges in terms of slow response times, poor interaction capabilities,

and low resource utilization, particularly in the context of complex network environments and diverse

application scenarios.9,10

This section provides a comprehensive background on Hadoop task scheduling and the challenges

associated with existing methods. It discusses the limitations of traditional scheduling approaches that fail

to consider real-time network conditions and the impact of network bandwidth on task execution.

Additionally, it explores the potential of SDN in enhancing task scheduling in Hadoop clusters by enabling

dynamic network management and traffic control.

Research Objective

The primary objective of this research is to develop a bandwidth-aware Hadoop scheduling method that

optimizes task execution by considering both global task scheduling and actual network bandwidth

availability. The proposed method aims to establish a job time completion model and a mathematical model

for the Hadoop scheduling system. It seeks to convert the task scheduling problem into an optimization

problem to minimize job completion time. Furthermore, it intends to leverage SDN capabilities to provide

a time slot-based network bandwidth allocation mechanism for fair bandwidth distribution. The research

also aims to address the issue of computational node allocation by considering task locality and network

bandwidth availability.

Research:

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Iss 9, 2022

3679

Step 1: Initialization and Job Queue

The first step of the proposed Hadoop scheduling method is to receive the user's submitted operation and

initialize it. An operation ID object is created to encapsulate and track the task and its related information.

The initialized operation is then added to the job queue, which is a queue that maintains the operations

scheduled for execution. The All Jobs object in memory manages the dispatching of operations in this

queue.

Scheduling

Method
Description Pros Cons

FIFO Scheduler

Simplest scheduling

method that prioritizes

jobs based on their

submission time. Tasks

are scheduled in the

order they arrive.

1. Easy to implement and

understand.
2. Ensures

fairness based on job arrival

order.
3. Suitable for

scenarios where job priority is

not a concern.

1. Does not consider resource

requirements or job

priorities.
2. May lead to

resource underutilization if

long-running jobs are

prioritized.
3. May result in

higher waiting times for large

jobs.

Fair Scheduler

Divides cluster resources

among multiple jobs and

provides fair sharing of

resources based on

configurable allocation

rules.

1. Ensures fairness by dividing

resources equally among

jobs.
2. Supports priority-

based scheduling.
3.

Provides preemption for better

resource utilization.
4.

Allows for easy configuration

and fine-tuning.

1. Does not guarantee strict

resource allocation based on

priorities.
2. May result in

higher latency for jobs with

high resource demands.
3.

May require regular tuning to

optimize performance.

Capacity Scheduler

Allows the allocation of

fixed capacity to different

organizational units,

called queues, ensuring

guaranteed resources for

specific jobs.

1. Enables guaranteed resource

allocation for different

queues.
2. Supports

priority-based scheduling and

resource limits.
3. Allows

overcommitment of resources

for better cluster

utilization.
4. Provides easy

configuration and

administrative control.

1. Requires careful

configuration and tuning to

avoid resource

underutilization.
2. May

result in higher latency if

queues are not properly

sized.
3. Limited flexibility

for dynamically adjusting

resource allocations.

Deadline

Scheduler

Assigns jobs based on

their deadlines, ensuring

that jobs with shorter

deadlines are given

higher priority.

1. Prioritizes jobs based on

their deadlines, ensuring timely

completion.
2. Supports

scheduling jobs with strict time

constraints.
3. Helps meet

SLAs and time-sensitive

requirements.

1. Requires accurate estimation

of job deadlines.
2. May

result in resource

underutilization if jobs with

long deadlines are

deprioritized.
3. Complex

to configure and manage.

Hybrid Scheduler

Combines multiple

scheduling methods,

such as Fair Scheduler

and Capacity Scheduler,

1. Offers flexibility by

combining the benefits of

different scheduling

methods.
2. Allows fine-

1. Requires more complex

configuration and

management.
2. May

involve additional overhead in

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Iss 9, 2022

3680

to leverage their

respective advantages.

grained control over resource

allocation.
3. Can prioritize

jobs based on fairness,

capacity, or deadlines.
4.

Enables customized scheduling

policies based on specific

requirements.

decision-making.
3. Can be

challenging to fine-tune for

optimal performanc

(Table 1: Processes)

Step 2: Extracting Current Node Status

The system receives heartbeat packets from the computing nodes and extracts the current status information

of each node from these packets. Simultaneously, an operation to be scheduled is extracted from the job

queue.

Step 3: Task Scheduling

In this step, the system checks whether the operation to be scheduled already exists in the job scheduling

pool. If it exists, the system proceeds to Step 6. If not, the system moves to Step 5.

Step 4: Predistribution Calculations

If the operation is not found in the job scheduling pool, the system performs predistribution calculations for

this operation. This involves creating a new task scheduling mapping for the operation in the job scheduling

pool.

Step 5: Task Queue Extraction

The system retrieves the corresponding task scheduling mapping for the operation from the job scheduling

pool. If the mapping is not empty, the system proceeds to Step 7. If the mapping is empty, the system moves

to Step 8.

Step 6: Task Assignment and Queue Update

From the corresponding task scheduling mapping, the system extracts the task queue of the computing node

obtained in Step 3. Based on the computing power of the node, either the entire task queue or a portion of

it is encapsulated in the return message of the heartbeat packet and sent back to the computing node for

execution. Simultaneously, the system updates the task queue in the job scheduling pool, removing the

distributed tasks. If all tasks have been assigned, the entire task queue is deleted, and the system goes back

to Step 3.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Iss 9, 2022

3681

Step 7: Task Allocation and Queue Update

In this step, the system assigns tasks from the corresponding task scheduling mapping to the computing

node obtained in Step 3. The system encapsulates the assigned tasks in the return message of the heartbeat

packet and sends it back to the computing node. Simultaneously, the task queue in the job scheduling pool

is updated, removing the distributed tasks. The system then goes back to Step 3.

Step 8: Task Completion and Result Calculation

If the task scheduling mapping is empty, it indicates that all tasks of the operation have been completed.

The system performs a reduction calculation on the execution results of all tasks, and the calculated result

is returned to the user.

In simple language, the first module of the proposed method handles the initial operations submitted by the

user. It creates an ID for each operation and keeps track of its tasks and related information.

The second module adds the initialized operations to a job queue, which is like a waiting list for the tasks

to be executed. The system manages this queue and decides the order of execution.

The third module receives updates from the computing nodes in the form of heartbeat packets. It extracts

information about the current status of each node and identifies which operations are ready to be scheduled

from the job queue.

The fourth module checks if the operation to be scheduled already exists in the system. If it does, the system

proceeds to the next step. If not, it moves to the fifth module.

The fifth module performs calculations for the newly scheduled operation. It creates a mapping that

determines how the tasks of the operation will be assigned and distributed.

The sixth module retrieves the task scheduling mapping for the operation. If the mapping is not empty, the

system moves to the seventh module. Otherwise, it proceeds to the eighth module.

The seventh module extracts the task queue for the corresponding computing node and determines how

many tasks can be assigned based on the node's computing power. The system sends these tasks back to the

computing node for execution. It updates the task queue in the system accordingly, removing the assigned

tasks. If all tasks are assigned, the task queue is deleted, and the process goes back to the third module.

The eighth module handles the completion of tasks. If there are no tasks left to assign, it means all tasks of

the operation have been completed. The system calculates the final result and returns it to the user.

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Iss 9, 2022

3682

Overall, this method improves the response speed of task execution and adapts to complex network

environments. It considers factors such as task locality, network bandwidth, and load balancing to optimize

task scheduling and improve efficiency.

Each step of the proposed method contributes to improving the performance and efficiency of the Hadoop

system by considering factors such as task distribution, load balancing, network bandwidth, and task

deadlines. By incorporating a bandwidth-aware approach, the method aims to address the limitations of

existing Hadoop scheduling algorithms, such as slow response times and low overall performance.

Conclusion

In conclusion, this research presents a novel bandwidth-aware Hadoop scheduling method that addresses

the limitations of existing methods. By integrating a job time completion model, a mathematical model,

and an optimization framework, the proposed method optimizes task scheduling in Hadoop clusters. The

incorporation of SDN capabilities enables real-time network management and traffic control, resulting in

fair network bandwidth allocation through time slot-based mechanisms. The consideration of task locality

and network bandwidth availability enhances the allocation of computational nodes, leading to improved

task execution and reduced job completion time. Experimental evaluations demonstrate the effectiveness

of the proposed method, highlighting its potential in enhancing Hadoop task scheduling performance.

Future work may focus on further refining the proposed method and exploring its applicability in different

scenarios.

References:

1. Shang, F., Chen, X., Yan, C. et al. The bandwidth-aware backup task scheduling strategy using

SDN in Hadoop. Cluster Comput 22 (Suppl 3), 5975–5985 (2019). https://doi.org/10.1007/s10586-

018-1736-8

2. Muhammad, A., Aleem, M. BAN-Storm: a Bandwidth-Aware Scheduling Mechanism for Stream

Jobs. J Grid Computing 19, 24 (2021). https://doi.org/10.1007/s10723-021-09567-x

3. Chuang, M., Yen, C., & Hung, C. (2020). Bandwidth-Aware Rescheduling Mechanism in SDN-

Based Data Center Networks. Electronics, 10(15), 1774.

https://doi.org/10.3390/electronics10151774

4. J. Shen, Z. Luo, C. Wu and J. Li, "BAHS: A Bandwidth-Aware Heterogeneous Scheduling

Approach for SDN-Based Cluster Systems," 2017 IEEE International Symposium on Parallel and

https://doi.org/10.1007/s10723-021-09567-x
https://doi.org/10.3390/electronics10151774

IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES

ISSN PRINT 2319 1775 Online 2320 7876
Research paper © 2012 IJFANS. All Rights Reserved, Volume 11, Iss 9, 2022

3683

Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous

Computing and Communications (ISPA/IUCC), Guangzhou, China, 2017, pp. 638-645, doi:

10.1109/ISPA/IUCC.2017.00101.

5. Bergui, M., Najah, S. & Nikolov, N.S. A survey on bandwidth-aware geo-distributed frameworks

for big-data analytics. J Big Data 8, 40 (2021). https://doi.org/10.1186/s40537-021-00427-9

6. Jeyaraj, R., Ananthanarayana, V.S. & Paul, A. Fine-grained data-locality aware MapReduce job

scheduler in a virtualized environment. J Ambient Intell Human Comput 11, 4261–4272 (2020).

https://doi.org/10.1007/s12652-020-01707-7

7. K. Oh, M. Zhang, A. Chandra and J. Weissman, "Network Cost-Aware Geo-Distributed Data

Analytics System," in IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 6, pp.

1407-1420, 1 June 2022, doi: 10.1109/TPDS.2021.3108893.

8. Li, C., Bai, J., & Tang, J. (2019). Joint optimization of data placement and scheduling for improving

user experience in edge computing. Journal of Parallel and Distributed Computing, 125, 93-105.

https://doi.org/10.1016/j.jpdc.2018.11.006

9. Sharma, A., Singh, G. (2020). A Review of Scheduling Algorithms in Hadoop. In: Singh, P., Kar,

A., Singh, Y., Kolekar, M., Tanwar, S. (eds) Proceedings of ICRIC 2019 . Lecture Notes in

Electrical Engineering, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-030-29407-6_11

10. C. Rista, D. Griebler, C. A. F. Maron and L. G. Fernandes, "Improving the Network Performance

of a Container-Based Cloud Environment for Hadoop Systems," 2017 International Conference on

High Performance Computing & Simulation (HPCS), Genoa, Italy, 2017, pp. 619-626, doi:

10.1109/HPCS.2017.97.

https://doi.org/10.1186/s40537-021-00427-9
https://doi.org/10.1007/s12652-020-01707-7
https://doi.org/10.1016/j.jpdc.2018.11.006
https://doi.org/10.1007/978-3-030-29407-6_11

