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ABSTRACT: 

Polycyclic aromatic hydrocarbons, or 

starphenes, are composed of three distinct 

acene-arm variants. The fundamental 

building blocks for the downsizing of 

various electronic devices, particularly 

organic ones, are starphenes. It was also a 

key component of several logical gates. 

Every electrical circuit, structure, or 

network in network topology can be 

represented as a graph with line segments 

(branches) acting as edges and primary 

nodes (or simply nodes) alternating to 

vertices. Resolvability parameters of a 

graph are a relatively recent specialized 

field in which the unique location of each 

primary node is obtained by forming the 

network as a whole. This article 

investigates the metric, edge metric 

dimension, and generalizations as 

resolvability characteristics of starphene 

structure. We demonstrated the consistent 

cardinalities of all the parameters 

examined for the starphene graph. 

Transforming the entire structure into a 

fresh shape provided by resolvability 

parameters facilitates understanding and 

handling of structures. 

1. Introduction 

The graphical representation of electric 

circuits known as network topology. 

Complex and complicated electric circuits 

or networks are relatively not easy to work 

on and study in their original forms, to 

make them easy and understandable, 

network topology is used. Any electric 

circuit or network can be transformed or 

shaped into its equivalent graph, in this 

procedure of terraforming an electric 

network into graph, open circuits took 

places of current sources and short circuits 

are came up in place of the passive 

elements and voltage sources. Open 

circuits usually denoted by nodes (or 

principal nodes) in network topology and 

vertices in pure mathematical graph theory, 

whereas short circuits are called as line 

segments (or branches) in network 

topology and edges in graph theory 

conceptualization. The formal definition of 

graphical representation of an electric 

circuit or network is defined as: 
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Shams University. Definition 1.1 [25]. 

‘‘Let @ðVð Þ@ ; Eð Þ@ Þ is an electric 

circuit (network) with Vð Þ@ is called as 

set of principal nodes (vertex set) and Eð 

Þ@ is the set of branches (edge set). The 

total number of principal nodes in an 

electric network are jVð Þ@ j and the 

count of branches usually denoted as jEð 

Þ@ j, basically these are order and size of 

a equivalent graph of an electric network.” 

To elaborate more in depth we took an 

example to transform an electric circuit 

into its corresponding graph. In the circuit 
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shown in Fig. 1 (left), the labeling with 1; 

2; 3, and 4, we can see are the four 

principal nodes (or vertices). There are 

also labeling with 15 X; 2 X; 5 X; 5 X, and 

10 X are the resistors having resistances in 

X-unit, 2 A is a current source, 10 V which 

is a voltage source, these are all seven 

branches (or edges) in the above circuit. 

There is another drawing shown in the 

following Fig. 1 (right), which is an 

equivalent graph of the electric circuit. For 

more detail of transformation of a electric 

circuit to graph see [53]. 

We will show some technique of graph to 

demonstrate theoretical parameters in the 

context of electronics. There are several 

different approaches to examine and 

investigate circuits of electric when it 

comes to graph theory. In 1975, [50,13] 

presented an effective notion of network 

visualization; in this concept, a small 

number of main nodes are chosen so that 

the whole set of principle nodes can be 

identified in relating to a distance vector, 

this is referred to as the metric basis or 

resolving set. This notion laid the 

groundwork for a number of graph 

theoretical parameters that are used in a 

variety of electrical and chemical 

engineering, 

 

and in other areas. The fault-tolerant 

concept of the definition of resolving set, 

described by [5], is also a unique approach 

of examining a graph (structure) wherein 

fault-tolerant of a solemn main vertex from 

the resolving set may be allow while the 

full collection of primary vertices still has 

a unique location. In 2018, [21] developed 

the edge metric resolving set, which 

assigns a unique location to the whole set 

of branches (edges) instead of main nodes. 

The authors in [28], investigated the edge 

version of a fault-tolerant resolving set in 

2020. In [22], authors presented the 

combination version of resolving and edge 

metric resolving set in 2017, which allows 

whole sets of main nodes and branches to 

be uniquely identified. Partition resolving 

set [6] is created when the whole set of 

primary vertices, is split down into 

subgroups and the requirement of 

acquiring distinct position of the set of 

principal nodes is met. All of the 

aforementioned ideas are referred to be 

metric-based resolvability parameters, and 

they’ve been investigated for many 

circuits, networks and graphs. For more 

versions of graph theoretical aspects, we 

refer to see [11,12,41]. 

The researchers of [14,27,7,6], examined 

complexity or computational cost and 

demonstrated that all of the parameters 

from resolvability family, investigated in 

this work relate to the nondeterministic 

polynomial time-hardness. The 

investigators are inspired by the proven 

results of the metric dimension which has 

a wide range of practical applications in 

our everyday lives and is well-studied. 

Metric dimension is used in a variety of 

disciplines, including the weighing of 

coins [50], robot navigation [23], 

pharmaceutical chemistry [7], computer 

networks [30,46] also linked to this idea, 

coastguard loran, sonar, and facility 

locating difficulties connected to this 

concept in the foundational article by [49], 

for a more comprehensive examination 

and the uses of this pointer [35,36]. In 
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several real-world applications, the 

partition dimension is also described, as an 

illustration, by [4], the process of 

identifying a network and also its 

verification is connected to this idea, the 

piloting or guidance of a robot also linked 

to this concept [23], the popular 

relationship Djokovic-Winkler linked to 

this concept [5], for the coding of games, 

their decoding and other strategies of 

games and especially mastermind games 

brief in [10]. See [7,13,18,19,32] for 

additional information on how to use and 

use these resolvability factors. 

As previously stated, the chemical field is 

blessed with the applications of this 

parameter. A huge number of publications 

are done and published whether in the 

graph prospectives or particularly related 

to metric dimension. The VC5C7 and 

HNaphtalenic nano-tubes are detailed in 

[16] with the pointer of metric, cellulose 

network is studied in [47], in which they 

computed some sharps boundaries on this 

parameter, silicate star is another chemical 

rich structure and [48] made a point of 

discussion this structure for metric 

dimension, two types of structure in which 

one is alpha-boron nanotubes and other 

one is twodimensional lattice, are detailed 

in [15], relating to the metric pointer and 

also linked with its applications. The 

partition dimension parameter is detailed 

in [3] with inconstant cardinality, a 

chemical structure which is a fullerene 

with ð4; 6Þ type, is also examined in [31] 

by using the notion of partition resolving 

set. We ask you to look at the papers 

[34,9,29] for some recent publications on 

the resolving partition set. 

Moving on to the edge metric dimension, 

[26] examined the barycentric subdivision 

of the Cayley graph, [55,1] presented a 

few works on the convex polytopes 

structure, and [51] addressed the chemical 

structures of wheel graphs. In addition, the 

foundational work on the edge metric 

dimension is published in the reference 

[52], which includes a quantitative 

comparison between metric and its various 

variants. Some current work can be gained 

by the references [39,45,39,2,42], for the 

fault-tolerant idea mentioned in [17] for 

basic graphs and [37] for diverse 

connectivity networks along with the 

deployment of their applications. 

The following are some very fundamental 

ideas and early mathematical definitions 

that are very helpful in comprehending the 

study work conducted in this research. 

Definition 1.2 ([34,25]). ‘‘Suppose @ðVð 

Þ@ ; Eð Þ@ Þ is an undirected graph of an 

electric circuit (network) with Vð Þ@ is 

called as set of principal nodes (vertex set) 

and Eð Þ@ is the set of branches (edge 

set). The distance between two principal 

nodes f1;f2 2 Vð Þ@ , denoted as dðf1;f2Þ 

is the minimum count of branches between 

f1  f2 path.” 

Definition 1.3 ([50,25]). ‘‘Suppose R  Vð 

Þ@ is the subset of principal nodes set and 

defined as R ¼ ff1;f2;...;fsg, and let a 

principal node f 2 Vð Þ@ . The 

identification rðfjRÞ of a principal node f 

with respect to R is actually a s-ordered 

distances ðdðf;f1Þ; dðf;f2Þ;...; dðf;fsÞÞ. If 

each principal node from Vð Þ@ have 

unique identification according to the 

ordered subset R, then this subset renamed 

as a resolving set of network @. The 

minimum numbers of the 
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elements in the subset R is actually the 

metric dimension of @ and it is denoted by 

the term dimð Þ@ .” 

Definition 1.4 ([5,25]). ‘‘A particular 

chosen ordered subset which were actually 

resolving set symbolize by R of a network 

@ is considered to be a fault-tolerant 

denoted by ðRf Þ, now if for each member 

of f 2 R, with the condition R n f is also 

remain a resolving set for the network @. 

The fault-tolerant metric dimension will be 

the least possible elements in the fault-

tolerant resolving set and labeled as dimf ð 

Þ@ .” 

Definition 1.5 ([21,24]). ‘‘A principal node 

f 2 Vð Þ@ and a branch e ¼ f1f2 2 Eð Þ@ 

, the distance between f and e is defined as 

dðe;fÞ ¼ minfdðf1;fÞ; dðf2;fÞg. Suppose 

Re  Vð Þ@ is the subset of principal nodes 

set and defined as Re ¼ ff1;f2;...;fsg, and a 

branch e 2 Eð Þ@ . The identification 

rðejReÞ of a branch e with respect to Re is 

actually a s-tuple distances ðdðe;f1Þ; 

dðe;f2Þ;...; dðe;fsÞÞ. If each branch from 

Eð Þ@ have unique identification 

according to Re, then Re is called an edge 

metric resolving set of network @. The 

least possible elements in the set Re is 

labeled as the edge metric dimension of @ 

and it is represented by dimeð Þ@ .” 

Definition 1.6 ([28,24]). ‘‘An fault-tolerant 

edge metric resolving set ðRe;f Þ of a 

network @ is considered, if for each f 2 

Re; Re n f is remains an edge metric 

resolving set for @. The fault-tolerant edge 

metric dimension will be the minimum 

amount of members in the fault-tolerant 

edge metric resolving set and it is 

described as the entire set of principal 

nodes have unique identifications, then Rp 

is named as the partition resolving set of 

the principal node of a network @. The 

least possible count of the subsets in that 

set of Vð Þ@ is labeled as the partition 

dimension ðpdð ÞÞ@ of @.” 

Given below are some useful observations 

and are very necessary in the finding of 

our main results of the resolvability 

parameters of our graph @. 

Theorem 1.9 [8]. Let dimð Þ@ , the metric 

and dimf ð Þ@ is the faulttolerant metric 

dimension of graph @. Then dimf ð Þ@ P 

dimð Þ þ@ 1: dime;f ð Þ@ .” 

Definition 1.7 [22]. If the identifications of 

entire set of principal nodes and branches 

are unique with respect to a chosen 

resolving set Rm  ð Þ@ , then Rm is called 

as mixed metric resolving set, and the 

minimum count of elements in Rm is 

called as mixed metric dimension and 

denoted as dimmð Þ@ . 

Definition 1.8 ([6,24]). ‘‘Let Rp # Vð Þ@ 

is the s-elements proper set and rfjRp ¼ 

fdðf; Rp1Þ; dðf; Rp2Þ;...; dðf; RpsÞg, is 

the s-tuple disp tance identification of a 

principal node f in association with R . If 

Theorem 1.12 [22]. Let dimmð Þ@ be a 

mixed metric dimension of a graph @. 

Then dimmð Þ@ P maxfdimð Þ@ ;dimeð 

Þg@ : 

2. Construction of Starphene St lð ;m;nÞ 

Starphenes are two-dimensional polycyclic 

aromatic hydrocarbons (PAH) which are 

build by three acene arms [33] connected 

systematically on a centered benzene ring 

[40]. Starphenes are widely used in many 

electronic devices, and played a key role in 
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the revolution of miniaturization of 

electronic devices. The structure used in 

the single molecule electronics as NOR 

[44] and as well as NAND [43]. The 

starphenes are very attractive materials in 

different electronic applications, especially 

organic electronics, the starphenes 

behaved as a component which is organic 

light emitting diodes in the field effect 

transistors [20]. 

Starphenes are belongs to the family of 

PAH, it has three acene arms we denoted 

as ðl; m; nÞ arms on a centered benzene 

ring. We denote the starphene structure or 

network throughout the work as St lð ; m; 

nÞ. The total number of vertices in 

starphene with different l; m and n 

variation 4ðl þ m þ nÞ  6, and 5ðl þ m þ nÞ  

9 are the total nodes or line segments. 

Given below are the vertex (or principal 

nodes) and edge set (line segment or 

branches) of corresponding graph of St lð ; 

m; nÞ. Theorem 1.10 [28]. Let dimeð Þ@ , 

the edge metric and dime;f ð Þ@ is the 

fault-tolerant edge metric dimension of 

graph @. Then dime;f ð Þ@ P dimeð Þ þ@ 

1: 

Theorem 1.11 ([50,52]). Let dimð Þ@ ; 

dimeð Þ@ ; dimmð Þ@ ; pdð Þ@ , are the 

metric, edge metric dimension, mixed 

metric dimension and partition dimension 

of a graph @ respectively. Then 

dimð Þ ¼@ dimeð Þ ¼@ 1; iff @ is a 

path graph; 

dimmð Þ ¼@ pdð Þ ¼@ 2; iff @ is a 

path graph: 

Furthermore, by merging the vertex and 

edge sets of St lð ; m; nÞ created above, 

the vertices marking utilized in the 

discoveries reported in Fig. 2, and the 

generalize St lð ; m; nÞ can be constructed. 

3. Results on the resolvability of starphene 

St lð ;m;nÞ 

This section is started by the core of this 

work, in which the resolving set with 

cardinality two is chosen from the possible 

combinations, later it’s generalizations in 

which the faulttolerant version of resolving 

set, edge metric dimension and its 

generalized version which same as the 

fault-tolerant of given above, mixed metric 

dimension and at the end final version of 

all resolvability parameters named as the 

partition dimension are elaborated. 

Lemma 3.1. Let the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2. Then the 

cardinality of resolving set of St lð ; m; nÞ 

is 2. 

Proof. Let R ¼ fa1; a2ðlþn1Þg, from the 

vertex set of graph of starphne St lð ; m; 

nÞ, with cardinality two. Consider R is one 

of the potential candidate for the role of 

resolving set. The identifications of the 

complete set of nodes in St lð ; m; nÞ with 

regard to the nodes in R are provided 

below. 

 

Fig. 2. The labeling of starphene St lð ; m; 

nÞ. 
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For f ¼ 1; 2;...; 2ðl þ n  1Þ, the r að fjRÞ, 

are following; r að fjRÞ ¼ ðf  1; 2ðl þ n  

1Þ  fÞ: 

For f ¼ 1; 2;...; 2ðl þ m  1Þ, the r bð fjRÞ, 

are following; 

r bð fjRÞ ¼ ððff;; 22ððlnþnlÞ þÞ  11 þ 

ffÞÞ;; ifif ff ¼¼ 21l;;22;l...þ ;12;l...;12;ðl 

þ m  1Þ: 

For f ¼ 1; 2;...; 2ðm þ n  1Þ, the r cð fjRÞ, 

are following; 

 ð2ðl þ nÞ  1  f; fÞ; if f ¼ 

1;2;...;2m  1; Proof. By using the basic 

technique of double inequality, to prove 

that the graph of starphene St lð ; m; nÞ 

has two metric dimension. We refer to see 

the Lemma 3.1, in that proved we already 

showed that the potential candidate for the 

resolving set R ¼ fa1; a2ðlþn1Þg, with 2 

cardinality. 

Now we will prove that dim St lð ð ; m; 

nÞÞ P 2. On contrary we can see that the 

starphene is not a path graph and using 

Theorem 1.11, it indicated that one metric 

dimension of St lð ; m; nÞ is not possible. 

Hence; dim St lð ð ; m; nÞÞ P 2. 

Hence, 

r c R  

We can see that all the primary nodes held 

unique identifications and met the idea of a 

resolving set by concluding that j jR ¼ 2, 

by looking at the identifications of the 

whole group of nodes of St lð ; m; nÞ. h 

Theorem 3.2. Let the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2. Then 

dim St lð ð ;m;nÞÞ ¼ 2: 

Lemma 3.3. Let the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2. Then the 

cardinality of fault-tolerant resolving set of 

St lð ; m; nÞ is 4. 

Proof. Let Rf ¼ fa2l1; a2l; b2ðlþm1Þ; 

c2ðmþn1Þg, from the vertex set of graph 

of starphne St lð ; m; nÞ, with cardinality 

four. Consider Rf is one of the potential 

candidate for the role of fault-tolerant 

resolving set. The identifications of the 

complete set of nodes in St lð ; m; nÞ with 

regard to the nodes in Rf are provided 

below. 

For f ¼ 1; 2;...; 2ðl þ n  1Þ, the r a fjRf , 

are following; 

  

  8>ðjf  2l þ 1j; jf  2lj; 2ðl þ mÞ  1  

f; 2ðl þ mÞ  fÞ; if f ¼ 1;2;...;2l  1; r 

afjRf ¼ <ðjf  2l þ 1j; jf  2lj; 1 þ f; 2ðm  

lÞ þ fÞ; if f ¼ 2l;2l þ 1;...; 

 >: 2ðl þ n  1Þ: 

>>>8ð2l  f; 2l  f þ 1; 2ðl þ m  1Þ  f; 2ðl þ 

mÞ  1  fÞ; 

r b fjRf  ¼ <ðf  2l þ 2; f  2l þ 3; 2ðl þ m  

1Þ  f; 2ðl þ mÞ  1  fÞ; 

>>>: if f ¼ 1;2;...; 2l  1; if f ¼ 2l;2l þ 1; 

...;2ðl þ m  1Þ: 

For f ¼ 1; 2;...; 2ðl þ m  1Þ, the r b fjRf , 

are following; 

For f ¼ 1; 2;...; 2ðm þ n  1Þ, the r c fjRf , 

are following; 

  8>ð2n  f þ 1; 2n  f; f; 2ðm þ n  1Þ  

fÞ; if f ¼ 1;2;...;2n  1; r cfjRf ¼ 

<ðf  2m þ 3; f  2m þ 2; f; 2ðm þ n  1Þ  fÞ;

 if f ¼ 2n;2n þ 1;...; 

 >: 2ðm þ n  1Þ: 

  

We can see that all the primary nodes held 

unique identifications and met the idea of a 

fault-tolerant resolving set by concluding 

that Rf  ¼ 4, by looking at the 

identifications of the whole group of nodes 

of St lð ; m; nÞ. h 

Theorem 3.4. If the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2, then dimf 

ðSt lð ;m;nÞÞ ¼ 4: 
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Proof. By using the basic technique of 

double inequality, to prove that the graph 

of starphene St lð ; m; nÞ has four fault-

tolerant metric dimension. We refer to see 

the Lemma 3.3, in that proved we already 

showed that the potential candidate for the 

fault-tolerant resolving set Rf ¼ fa2l1; a2l; 

b2ðlþm1Þ; c2ðmþn1Þg, with four 

cardinality. one time for each loop, resulted 

in the same identifications are; rvfjR0f  ¼ 

rvjjR0f , where vf;vj 2 fl 

acenearmverticesg. 

Case 3: Let R0f  fcf : f ¼ 1; 2;...; 2ðm þ n  

1Þg, and containing three members one 

time for each loop, resulted in the same 

identifications are; rvfjR0f  ¼ rvjjR0f , 

where vf 2 fl acenearmverticesg, and vj 2 

fm  acenearmverticesg. 

  

 Case 4: Let R0f  faf; bj : 

f ¼ 1; 2;...; 2ðl þ n  1Þ; and j ¼ 

1; 2;...; 2ðl þ m  1Þg, and containing three 

members one time for each loop, resulted 

in the same identifications are; rvfjR0f  ¼ 

rvjjR0f , where vf;vj 2 fn  

acenearmverticesg. 

 Case 5: Let R0f  faf; cj : 

f ¼ 1; 2;...; 2ðl þ n  1Þ; and j ¼ 

1; 2;...; 2ðm þ n  1Þg, and containing three 

members one time for each loop, resulted 

in the same identifications are; rvfjR0f  ¼ 

rvjjR0f , where vf;vj 2 fn  

acenearmverticesg. 

 Case 6: Let R0f  fbf; cj : 

f ¼ 

1; 2;...; 2ðl þ m  1Þ; and j ¼ 1; 2;...; 2ðm þ 

n  1Þg, and containing three members one 

time for each loop, resulted in the same 

identifications are; rvfjR0f  ¼ rvjjRf0 , 

where vf 2 fl acenearmverticesg, and vj 2 

fm  acenearmverticesg. 

All the above chosen cases are resulted in 

that there is no candidate for fault-tolerant 

resolving set with cardinality three and 

implied that the graph does not have dimf 

ðSt lð ; m; nÞÞ ¼ 3. Hence; dimf ðSt lð ; 

m; nÞÞ P 4. 

Now by relating both inequalities, end up 

with conclusion that dimf ðSt lð ;m;nÞÞ ¼ 

4:  

Lemma 3.5. Let the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2. Then the 

cardinality of edge metric resolving set of 

St lð ; m; nÞ is 3. 

8><ðf  1; 2ðl þ nÞ  3  f; 2ðl þ m  1Þ  fÞ; 

r að fafþ1jReÞ ¼ ðf  1; 2ðl þ nÞ  3  f; 

2ðm  lÞ þ 1 þ fÞ; 

>: if f ¼ 1;2;...;2l  2; if f ¼ 2l  1;2l;...; 

2ðl þ nÞ  3: 

Proof. Let Re ¼ fa1; a2ðlþn1Þ; 

b2ðlþm1Þg, from the vertex set of graph 

of starphne St lð ; m; nÞ, with cardinality 

three. Consider Re is one of the potential 

candidate for the role of edge resolving set. 

The identifications of the complete set of 

edges in St lð ; m; nÞ with regard to the 

nodes in Re are provided below. 

For f ¼ 1; 2;...; 2ðl þ nÞ  3, the r a 

efafþ1jRe, are following;For Case 4: Let 

R0e  faf; bj : f ¼ 1; 2;...; 2ðl þ n  1Þ; and j 

¼ f ¼ 1; 2;...; 2ðl þ mÞ  3, the r b fbfþ1jR , 

are following; 1; 2;...; 2ðl þ m  1Þg, and 

containing three members one time 

  

 >8ðf; 2ðl þ m  1Þ  f; 2ðl þ mÞ  3  

fÞ; if f ¼ 1;2;...;2l  2; 

r bð fbfþ1jReÞ ¼ <ðf; 2ðn  lÞ þ 1 þ f; 2ðl 

þ mÞ  3  fÞ; if f ¼ 2l  1;2l;...; 

 >: 2ðl þ mÞ  3: 

For f ¼ 1; 2;...; 2ðm þ nÞ  3, the r cð 

fcfþ1jReÞ, are following; 

8><ð2ðl þ n  1Þ  f; f; 2ðm þ n  1Þ  fÞ; 
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r cð fcfþ1jReÞ ¼ ðf  2ðl  nÞ þ 1; f; 

2ðm þ n  1Þ  fÞ; 

>: if f ¼ 1;2;...;2n  2; if f ¼ 2n  

1;2n;...; 2ðm þ nÞ  3: 

  

For f ¼ 1; 3; 5;...; 2l  1, the r að fbfjReÞ, 

are following; r að fbfjReÞ ¼ ðf  1; 2ðl þ n  

1Þ  f; 2ðl þ m  1Þ  fÞ: 

For f ¼ 2l; 2l þ 2; 2l þ 4;...; 2ðl þ n  1Þ, 

and j ¼ 2ðl þ nÞ  1  f, the r a fcjjRe, are 

following; r a fcjjRe ¼ ðf  1; 2ðl þ n  1Þ  f; 

2ðm  lÞ þ fÞ: 

For f ¼ 2l; 2l þ 2; 2l þ 4;...; 2ðl þ m  

1Þ, and j ¼ 2n; 2n þ 2;...; 2ðm þ n  1Þ, 

the r b fcjjRe, are following; r b fcjjRe ¼ 

ðf; f þ 1; 2ðl þ m  1Þ  fÞ: 

We can see that all the primary edges held 

unique identifications and met the idea of a 

edge resolving set by concluding that jRej 

¼ 3, by looking at the identifications of the 

whole group of edges of St lð ; m; nÞ. h 

Theorem 3.6. If the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2, then dimeðSt 

lð ;m;nÞÞ ¼ 3: 

Proof. To prove that the edge metric 

dimension of St lð ; m; nÞ is 3, we choose 

the double inequality method for dimeðSt 

lð ; m; nÞÞ  3, we are referring the Lemma 

3.5 which is a candidate for the edge 

metric resolving set with cardinality three, 

it is taken as 

Re ¼ fa1; a2ðlþn1Þ; bðlþm1Þg. 

Now for dimeðSt lð ; m; nÞÞ P 3, by 

contradiction we get dimeðSt lð ; m; nÞÞ 

¼ 2, for this, suppose there is a candidate 

of edge metric resolving set is R0e with 

cardinality 2. Given below are some 

discussion in the support of this 

assumption. 

Case 1: Let R0e  faf : f ¼ 1; 2;...; 2ðl þ n  

1Þg, and containing three members one 

time for each loop, resulted in the same 

identifications are; r e fjR0e ¼ r e jjR0e, 

where ef; ej 2 fcentralbenzeneringedgesg. 

Case 2: Let R0e  fbf : f ¼ 1; 2;...; 2ðl þ m  

1Þg, and containing three members one 

time for each loop, resulted in the same 

identifications are; r e fjR0e ¼ r e jjR0e, 

where ef; ej 2 fcentralbenzeneringedgesg. 

Case 3: Let R0e  fcf : f ¼ 1; 2;...; 2ðm þ n  

1Þg, and containing three members one 

time for each loop, resulted in the same 

identifications are; r e fjR0e ¼ r e jjR0e, 

where ef; ej 2 fcentralbenzeneringedgesg. 

for each loop, resulted in

 the same identifications are; r 

e fjR0e ¼ r e jjR0e, where ef; ej 2 fm  

acenearmedgesg. 

 Case 5: Let R0e  faf; cj : 

f ¼ 1; 2;...; 2ðl þ n  1Þ; and j ¼ 

1; 2;...; 2ðm þ n  1Þg, and containing three 

members one time for each loop, resulted 

in the same identifications are; r e fjR0e ¼ 

r e jjR0e, where ef 2 

fcentralbenzeneringedgesg, and ej 2 fl  

acenearmedgesg. 

 Case 6: Let R0e  fbf; cj : 

f ¼ 1; 2;...; 2ðl þ m  1Þ; and j ¼ 

1; 2;...; 2ðm þ n  1Þg, and containing three 

members one time for each loop, resulted 

in the same identifications are; r e fjR0e ¼ 

r e jjR0e, where ef 2 

fcentralbenzeneringedgesg, and ej 2 fm  

acenearmedgesg. 

Analogously, from the above discussion 

we can observe that we are unable to get a 

single candidate from the possible 

combinations which are jV St lð ð 

;m;nÞÞjC2 ¼ 2!ðjjV St lV St lðð 

ðð;;mm;;nnÞÞÞÞjj! 2Þ! ¼ 

2ð4ðð4lþðlþmmþþnÞnÞ6Þ8!Þ! of the set 

of all principle nodes of starphene graph St 

lð ; m; nÞ. This indicate that the edge 
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metric dimension of St lð ; m; nÞ; 2 is not 

possible. Hence; dimeðSt lð ; m; nÞÞ P 3. 

Now by relating both acquired inequalities, 

end up with conclusion that 

dimeðSt lð ;m;nÞÞ ¼ 3:  

Lemma 3.7. Let the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2. Then the 

cardinality of fault-tolerant edge metric 

resolving set of St lð ; m; nÞ is 4. 

Proof. Let Re;f ¼ fa2l; a2l1; b2ðlþm1Þ; 

c2ðmþn1Þg, from the vertex set of graph 

of starphne St lð ; m; nÞ, with cardinality 

four. Consider Re;f is one of the potential 

candidate for the role of edge faulttolerant 

resolving set. The identifications of the 

complete set of edges in St lð ; m; nÞ with 

regard to the nodes in Re;f are provided 

below. 

For f ¼ 1; 2;...; 2ðl þ nÞ  3, the r a 

fafþ1jRe;f , are following; 

>8ð2l  f  2; 2l  1  f; 2ðl þ m  1Þ  f; 2ðl þ 

mÞ  1  fÞ; 

>>>>>>>>>>>if f ¼ 1;2;...;2l  2; 

>ðf  2l þ 1; 2l  1  f; 2ðm  lÞ þ 1 þ f; 2ðl þ 

mÞ  1  fÞ; 

r a fafþ1jRe;f  ¼ ><>>>>>>>if f ¼ 2l  1; 

>ðf  2l þ 1; f  2l; 2ðm  lÞ þ 1 þ f; 2ðm  lÞ þ 

fÞ; 

:>>>>if f ¼ 2l;2l þ 1;...;2ðl þ nÞ  3: 

For f ¼ 1; 2;...; 2ðl þ mÞ  3, the r b 

fbfþ1jRe;f , are following; Proof. Let 

Rm ¼ fa1; a2ðlþn1Þ; b2ðlþm1Þg, from 

the vertex set ofm 

 f f  8>>>ð2l  f  1; 2l  f; 2ðl þ mÞ  f  3; 

2ðl þ m  1Þ  fÞ; is one of the 

potential candidate for the role of mixed 

resolvinggraph of starphne St lð ; m; nÞ, 

with cardinality three. Consider R 

 þ1 e;f <if f ¼ 1;2;...;2l  2; set. 

The identifications of the complete set of 

nodes in St lð ; m; nÞ 

r b b jR ¼ >ðf þ 2 1ð  lÞ; f  2l þ 3; 

2ðl þ mÞ  f  3; 2ðl þ m  1Þ  fÞ; with 

regard to the nodes in Rm are provided 

below. 

 >:>if f ¼ 2l  1;2l;...;2ðl þ mÞ  3:

 For f ¼ 1; 2;...; 2ðl þ n  1Þ, the r að 

fjRmÞ, are following; 

  

r að fjRmÞ ¼ ððff  11;; 22ððll þþ nn  11Þ 

Þ  ff;; 21ðþl þfÞm; Þ  1  fÞ; ifif ff ¼¼ 

12;l;22;l...þ ;12;l...;12;ðl þ n  1Þ: 

For f ¼ 1; 2;...; 2ðm þ nÞ  3, the r c 

fcfþ1jRe;f , are following; 

8ð2n  f; 2n  f  1; 2ðm þ n  1Þ  f; 2ðm þ nÞ  

f  3Þ; 

f f 1 e;f  <>>>if f ¼ 1;2;...;2n  2; 

r c c þ jR ¼ ðf  2n þ 3; f  2n þ 2; 

2ðm þ n  1Þ  f; 2ðm þ nÞ  f  3Þ; 

>>>:if f ¼ 2n  1;2n;...;2ðm þ nÞ  3: 

For f ¼ 1; 3; 5;...; 2l  1, the r a fbfjRe;f , 

are given below; r a fbfjRe;f  ¼ ð2l  f  1; 2l  

f; 2ðl þ m  1Þ  f; 2ðl þ mÞ  f  1Þ: 

For f ¼ 2l; 2l þ 2; 2l þ 4;...; 2ðl þ n  1Þ, 

and j ¼ 2ðl þ nÞ  1  f, the 

r a fcjjRe;f , are given below; r a fcjjRe;f  

¼ ðf  2l þ 1; f  2l; 2ðm  lÞ þ f; 2ðm  lÞ þ f  

1Þ: 

For f ¼ 2l; 2l þ 2; 2l þ 4;...; 2ðl þ m  

1Þ, and j ¼ 2n; 2nþ 

2;...; 2ðm þ n  1Þ, the r b fcjjRe;f , are 

given below; r b fcjjRe;f  ¼ ðf þ 2 1ð  lÞ; f 

þ 2 1ð  lÞ; 2ðl þ m  1Þ  f; 2ðm þ n  1Þ  fÞ: 

We can see that all the primary edges held 

unique identifications and met the idea of a 

edge fault-tolerant resolving set by 

concluding that Re;f  ¼ 4, by looking at 

the identifications of the whole group of 

edges of St lð ; m; nÞ. h 

Theorem 3.8. Let the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2. Then dime;f 

ðSt lð ;m;nÞÞ ¼ 4: 
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Proof. To show that the graph of starphene 

St lð ; m; nÞ has faulttolerant edge metric 

dimension 4, we are implementing the 

method of double inequality and implied at 

dime;f ðSt lð ; m; nÞÞ  4, which is already 

proven by the Lemma 3.7, it proved that 

there is a candidate for the fault-tolerant 

edge metric resolving set with cardinality 

four, it is taken as Re;f ¼ fa2l1; a2l; 

b2ðlþm1Þ; c2ðmþn1Þg. 

Now for dime;f ðSt lð ; m; nÞÞ P 4, by 

contradiction we get dime;f ðSt lð ; m; 

nÞÞ ¼ 3, and by referring the Theorem 

1.10 and 

Theorem 3.6 concluded that 3 fault-

tolerant edge metric dimension of St lð ; 

m; nÞ is not possible. Hence; dime;f ðSt lð 

; m; nÞÞ P 4. 

Now by relating both acquired inequalities, 

end up on the conclusion that 

dime;f ðSt lð ;m;nÞÞ ¼ 4:  

Lemma 3.9. Let the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2. Then the 

cardinality of mixed metric resolving set of 

St lð ; m; nÞ is 3. 

For f ¼ 1; 2;...; 2ðl þ m  1Þ, the r bð 

fjRmÞ, are following; 

r bð fjRmÞ ¼ ððff;; 22ððlnþnlÞ Þ þ 11 þ 

ff;; 22ððll þþ mm  11Þ Þ  ffÞÞ;; ifif ff 

¼¼ 12;l;22;l...þ ;12;l...;12;ðl þ m  1Þ: 

For f ¼ 1; 2;...; 2ðm þ n  1Þ, the r cð 

fjRmÞ, are following; 

r cð fjRmÞ ¼ ðð22ððnl þnmÞ Þ 

þ11þf;f;f;f;fÞf;Þ; ifif ff ¼¼ 

21m;2;;2...m;þ2m1;...1;;2ðm þ n  1Þ: 

The above identifications are just the 

nodes identifications, to fulfill the 

definition of mixed we need the 

identifications of entire line segment set as 

well, as we know that Re ¼ Rm, mean that 

the cardinalities of both edge metric and 

mixed metric resolving sets are same, 

therefore, for the identifications of entire 

branches set we refer the Lemma 3.5. 

We can see that all the primary edges and 

nodes as well held unique identifications 

and met the idea of a mixed resolving set 

by concluding that jRmj ¼ 3, by looking at 

the identifications of the whole group of 

edges and nodes of St lð ; m; nÞ. h 

Theorem 3.10. Let the graph of starphene 

is St lð ; m; nÞ with l; m; n P 2. Then 

dimmðSt lð ;m;nÞÞ ¼ 3: 

Proof. To show that the graph of starphene 

St lð ; m; nÞ has mixed metric dimension 

3, by implementing the method of double 

inequality, and referring the Lemma 3.9 in 

which one of the candidate of mixed 

metric resolving set with cardinality 3 is 

given and it is taken as Rm ¼ fa1; 

a2ðlþn1Þ; b2ðlþm1Þg. 

Now we will prove that dimmðSt lð ; m; 

nÞÞ P 3. On contrary we can see that the 

starphene is not a path graph (see Theorem 

1.11) and using Theorem 1.12, it indicate 

that 2 mixed metric dimension of St lð ; m; 

nÞ is not possible. Hence; dimmðSt lð ; m; 

nÞÞ P 3. 

Hence, 

dimmðSt lð ;m;nÞÞ ¼ 3:  

Lemma 3.11. Let the graph of starphene is 

St lð ; m; nÞ with l; m; n P 2. Then the 

cardinality of partition resolving set of St 

lð ; m; nÞ is 3. 

Proof. Let Rp ¼ fRp1; Rp2; Rp3g, where 

Rp1 ¼ fa1g; Rp2 ¼ fa2ðlþn1Þg; Rp3 ¼ V 

St lð ð ; m; nÞÞ n fa1; a2ðlþn1Þg, of the 

vertex set of graph of starphne St lð ; m; 

nÞ, with cardinality three. Consider Rp is 

one of the potential candidate for the role 

of partition resolving set. The 

identifications of the complete set of nodes 

in St lð ; m; nÞ with regard to the nodes in 

Rp are provided below. 
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Table 1 

Resolvability parameters of starphene St lð 

; m; nÞ. 

dim St lð ð ; m; nÞÞ ¼ 2 dimeðSt lð ; m; 

nÞÞ ¼ dimmðSt lð ; m; nÞÞ ¼ pd St lð ð ; 

m; nÞÞ ¼ 3 dimf ðSt lð ; m; nÞÞ ¼ dime;f 

ðSt lð ; m; nÞÞ ¼ 4 

  

For f ¼ 1; 2;...; 2ðl þ n  1Þ, the r a fjRp, 

are following; r a fjRp ¼ ðf  1; 2ðl þ n  1Þ  

f; zÞ: 

Where z ¼  10;; ifotherwisef ¼ 1; 

2ð:l þ n  1Þ; . 

For f ¼ 1; 2;...; 2ðl þ m  1Þ, the r b fjRp, 

are following; 

r b fjRp ¼ ððff;; 22ððnl þnlÞ þÞ  11 þ ff;; 

00ÞÞ;; ifif ff ¼¼ 21l;;22;l...þ ;12;l...;12;ðl 

þ m  1Þ: 

For f ¼ 1; 2;...; 2ðm þ n  1Þ, the r c fjRp, 

are following; 

r c fjRp ¼ ðð22ððnl þnmÞ Þ 

þ11þf;f;f;f;0Þ0;Þ; ifif ff ¼¼ 

21m;2;;2...m;þ2m1;...1;;2ðm þ n  1Þ: 

We can see that all the primary nodes as 

well held unique identifications and met 

the idea of a partition resolving set by 

concluding that Rp ¼ 3, by looking at the 

identifications of the whole group of nodes 

of St lð ; m; nÞ. h 

Theorem 3.12. Let the graph of starphene 

is St lð ; m; nÞ with l; m; n P 2. Then pd St 

lð ð ;m;nÞÞ ¼ 3: 

Proof. To show that St lð ; m; nÞ has the 

partition dimension which is 3. From 

Lemma 3.11 given above shows that there 

is a candidate of the partition resolving set 

with cardinality 3 and it is been taken as, 

Rp ¼ fRp1; Rp2; Rp3g, where Rp1 ¼ 

fa1g; Rp2 ¼ fa2ðlþn1Þg, and Rp3 ¼ V St 

lð ð ; m; nÞÞ n fa1; a2ðlþn1Þg. By using 

Lemma 3.11 and Theorem 1.11, it is 

concluded that pd St lð ð ;m;nÞÞ ¼ 3:  

4. Conclusion 

This article examines the structure of the 

starphene St lð; m; nÞ in terms of various 

resolvability parameters, particularly those 

that depend on a graph's metric. The first 

of these parameters is referred to as the 

metric dimension, and numerous 

generalizations are offered before arriving 

at the mixed metric dimension. 

Additionally, the partition dimension is a 

generalization of the original idea of 

resolvability parameters. Table 1 presents 

the conclusion observations based on the 

research work conducted. 
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