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Abstract. We prove Hardy’s type uncertainty principle on connected nilpotent Lie groups for
the Fourier transform. An analogue of Hardy’s theorem for the Gabor transform has been
established for connected and simply connected nilpotent Lie groups. Finally Beurling’s
theorem for the Gabor transform is discussed for groups of the form R" XK, where K is a
compact group.

1. Introduction
Heisenberg uncertainty principle relates the uncertainties in the measurement of position
and moment of microscopic particles. In harmonic analysis, the uncertainty principle relates
the behavior of a function like support or decay with that of its Fourier transform. For f €

L1(R), the Fourier transform fb on R is given by

Fi&) = [ sa) e da.

One of the uncertainty principles states that a nonzero integrable function f on following
theorem of Hardy makes the above statement more precise.b R and its Fourier transform f
cannot both simultaneously decay rapidly. The

Theorem 1.1 ([15]). Let fbe a measurable function on R such that

(i) 1f@)] < Ce ™ b tor all x € R,
(i) [f(§] < Ce- forall £ € R, where a, b, and C are positive constants. If ab > 1, then f

=0a.e.

Key words and phrases. Hardy’s type theorem, Fourier transform, Beurling theorem, continuous Gabor
transform, nilpotent Lie group.

Several analogues of the above result have been proved in the setting of R, Heisenberg
group Hx» [26], Heisenberg motion group Hr n K [5], locally compact abelian groups, various
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classes of solvable locally compact groups [3], Euclidean motion group [24], and nilpotent
Lie groups [2,18,23]. A generalization of Hardy’s theorem is Beurling’s theorem, which can
be stated as follows.

Theorem 1.2 ([17]). Let fbe a square integrable function on R satisfying
[ [1r@ifere< ar g < oo
RJR .

Then f=0a.e.

Several analogues of Beurling’s theorem for the Fourier transform has been proved for

exponential solvable Lie groups [1] and various classes of nilpotent Lie groups
[4,22,23,27,31]. Uncertainty principles like Heisenberg uncertainty inequality and qualitative
uncertainty principle have been investigated for the Fourier transform (see [6,9,28,29]). For a
detailed survey of the uncertainty principles for the Fourier transform, we refer to [13].
The transformation of a signal using the Fourier transform loses the information about time,
and it is very difficult to tell where a certain frequency has occurred. Thus, in order to tackle
such problems, a joint time-frequency analysis was utilized. Gabor transform is turned out to
be one such tool. The approach used in this technique is cutting the signal into segments
using a smooth window function and then computing the Fourier transform separately on
each smaller segment. In this manner, the Gabor transform provides the local aspect of the
Fourier transform with time resolution equal to the size of the window. It results in a two-
dimensional representation of the signal.

Let ¢ € L2(R) be a fixed function usually called az window function. The Gabor transform
of a function f € L (R) with respect to the window function 1 is defined by Gyf: Rx Rb - C

as

Guf(t,€) = /R f(2) Oz — 1) e 2™ gy,

for all (£,€) € R x R.

In [10], the Gabor transform on a second countable, locally compact, unimodular group G of
type | has been studied. The Heisenberg uncertainty inequality was proved in [7,30] for the
Gabor transform for the groups of the form KnR», where K is a separable unimodular locally
compact group of type I and connected, simply connected nilpotent Lie groups. Qualitative
uncertainty principle was proved for the Gabor transform for several classes of locally
compact groups, including low dimensional nilpotent Lie groups [25]. Later, Hardy’s
uncertainty principle for the Gabor transform was proved for locally compact abelian groups
having noncompact identity component and groups of the form R? xK, where K is a compact
group having irreducible representations of bounded dimension [8]. In [11], the spherical
Gabor transform using the properties of Gelfand pairs and the spherical Fourier transform,
has been studied and Lieb inequality, Donoho— Stark’s uncertainty principles, and Beckner’s
uncertainty principles were proved.

In this paper, analogues of above uncertainty principles on nilpotent Lie groups for the
Fourier and Gabor transforms have been studied. Results obtained have been organized as
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follows: In section 3, Hardy’s type results for the Fourier transform have been established for
connected nilpotent Lie groups. Section 4 deals with an analogue of Hardy’s theorem for the
Gabor transform. In the last section, we prove Beurling’s theorem for the Gabor transform for
locally compact abelian groups with noncompact connected component and groups of the
form R x K, where K is a compact group.

2. Preliminaries

For a second countable, locally compact, unimodular group G of type I, dx will irreducible
unitary representations of bG equipped with Plancherel measure dmr. denote the Haar measure
on G. Let G be the dual space of G consisting of all
For f € L1 n L2(G), the Fourier transform fbof f is an

Fim) = ] 1) m(a)de.

operator-valued  function ° G on Gb defined as

—~

Moreover, by the Plancherel theorem [12, Theorem 7.36], f(T) is a HilbertSchmidt operator
and satisfies the following property:

N2y — V2 drr
/G f (@) P = / 1F(m) s dn on

For each (x,m) € GxGb, we defineHxm Hxmb) = m(x)HS(Hx), where m(x)HS(Hr) = {m(x)T :
T € HS(Hn)}. Then forms a Hilbert space with the inner product given by
( m(x)T,(x)S) Hom=tr(S*T) = ( T,S) HS(Hn).

Also, Him = HS(Hx) for all (z.7) € G x G. Let H*(G x G) denote the direct integral of

{Hm}xm) ¢ 6o With respect to the product measure dx dm. Then

-~ € x
H2(G x G)
forms a Hilbert space with the inner product givenby . ( EK) 2 ¢b) = Z,

tr[F(x,m)K(x,m)*] dx dm.

H X
GxG
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Let f € C (G), the space of all continuous complex-valued functions on? G with compact
support, and let i be a fixed function in L (G). For (x,7) € GxGb, the continuous Gabor
Transform [10, Definition 3.1] of f with respect to the window function y can be defined as a

measurable field of operators ony Z 1 G x Gb by

G flxm) = f0) Y(x-y) n(y)* dy. (2.2)

G

One can verify that is a Hilbert—Schmidt operator for all x € G and for almost all

m € G. We can extend Gzy uniquely to a bounded linear operator from L2(G) into a closed
subspace of H (GxGb), which will again be denoted by Gi2y, we have. As in [10, Corollary

3.4], for fi,f2 € L2(G) and window functions ¥ and

( Gyifr,Gyaf2) = Y2,91) { fuf2) . (2.3)

For detailed study of the Gabor transform on second countable, locally compact, unimodular
group G of type I, one can refer to [10].
3. Nilpotent Lie group

For a connected nilpotent Lie group G with its simply connected covering group

G, letT. - - Denoting g by the
be a discrete subgroup of GG such that G = G/I’

Lie G and G, let B = {X1, Xs,..., X,.} algebra ofe e

through the ascending central series of g. The norm function on g is defined as the Euclidean

norm ofwith x; € R, X with respect to the basis B. Indeed, forX = 23;1 i X; Sy

n

= (32 a)"

j=1
Define a “norm function” on G by setting

ixll = inf {lIXIl : X € g such that expsX = x}. The composed map, R"— g —

(1,...,20) = Z[L‘ij — exPg (ZIij)
i=1 j=1 2950 |Page
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Ge given by
is a diffeomorphism and maps the Lebesgue measure on R” to the Haar measure measurable

(integrable) functions on€ Ge can be viewed as such functions on R,

on G. In this manner, we identify the Lie algebra g, as a set with R . Also,

Let g- be the vector space dual of 9 and let {XT,.... X7} pe the basis of g+, which is dual
to {X1,..,.XG onn}g. Then.. We shall identify{-X7, ..., X, } g.is a Jordan-Hélder basis forwith

R"via the map the coadjoint action of

§= (&..11"'15.72) - Z@X;

Jj=1

7’

and on g., the Euclidean norm relative to the basis{-X1. - - .. X7} is defined as
" N2
1> axi|= ()" =
=1 i=1 .

Let U denote the Zariski open subset of g« of generic elements under the coadjoint

jump indices,the  Plancherel measure onThen We =
i i Vr = R-span{ X} :i € T} _ _
TU=n{V17r,..,nis a cross-section for the generic orbits,

andG} \ S, and that W. supports action of G with respect to the basis{ X7, - - X} Suppose
that S'is the set of

)act center can be uniquely written ase (t,zy), t € Rz € T4, and . Every element of a connected nilpotent Lie
group
y €Y, whereY = eXP(2 510 RX;) we now prove a generalization of the result proved in

[2].

Theorem 3.1. Let G be a connected nilpotent Lie group with noncompact center and let f : G
— C be a measurable function satisfying

(i) [f(t,z,9) < C(1 + t[*) Ve ™ p(y)
¢ € L'NLA(Y). for all (tzy) € G and for some

(i) lle(Nlins < C(1 + lI€I2)Ne-mPilz for all € € W, where a,8, and C are positive real
numbers and N is a nonnegative integer. If af > 1, then f=0 a.e.

Before proving this main result, we shall first prove some lemmas. Let K be a compact
central subgroup of G and let y be a character of K. For f € L1(G), define f,: G — C by

ftzy) = Z f{tzky) x(k) dk.

K
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Lemma 3.2. Let G be a connected nilpotent Lie group with a compact central subgroup K and
let f be a measurable function on G satisfying conditions (i) and (ii) of Theorem 3.1. Then the
function f, also satisfies these conditions.

Proof. On normalizing the Haar measure on central subgroup K, we obtain

izp)| S Z C(1 + )V emsemtagp(y) dk

=C(1+ Ve o(y).

Also, me(f,) = me(f)Rk x(k) me(k) dk. If m¢|k is a multiple of some character of K, which is

different from y, then by orthogonality relation of compact groups, we have

7. x(K) me(K) dk = 0.

Thus, (£l < C(1 + I1€)12)Ne-prlélz, o

Denote by G¢, the maximal compact subgroup of G. Then Ge¢ is connected, contained in
Z(@), and G/Geis simply connected.

Lemma 3.3. Let G be a connected nilpotent Lie group. Suppose that Theorem 3.1 holds for
all quotient subgroups H = G/C, where C is a closed subgroup of Gc = Z(G)c such that either
Z(G)=Cor Z(G)/C=T. Then Theorem 3.1 also holds for G.

by Lemma 3.2, it follows that the function f, satisfies the Hardy’s type decay conditions.

Since 117 = IX/Ky =T or H* = {e}, using the hypothesis, we get f,= 0 a.e. Asy € K is
arbitrarily chosen, we have f = 0 a.e. o For a second countable, locally compact group G
containing R as a closed central subgroup, let S denote a Borel cross-section for the cosets of
R in G. The inverse image of Haar measure on G/R under the map s - Rs fromS — G/R is
denoted by ds.

Lemma 3.4. Let G and S be as defined above and letz¥ art,  f . G - C be a

measurablez function satisfying |f(ts)| < (1+|t| ) e- ¢(s), for some a >0 and ¢ € L (S).

fa fo(2) fo(z — t)dz.
Define a function g on R / such that g(t) = R (f * f)(t) ds,
where

Then [9(t)] < C1e7"™2 for some €;>0and 0 <y <a.
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Proof. Foreacht € R
and 0 _ ' 7PV <y < a we
) = y —1)8) dz d. '
nd O Jg) = | [ [ 1) TG = 1)3) dz ]
The < / )] 1 (= — 8)s)] d= ds function
S JR

< / B(5)*ds [ (1+[2HN(1 + |2 — t2)Ne ™+ E=07 gy
JS JR

N
< lgl; / > (k) ( ) )z”‘(z _ )He e gmam?
b Rk,j:o J

5 (@ NT(—)? =zt 7,

N\ 2k, —(a—~)T22
2= ()2 i hounded on R, say by Ki.
Set K= max{Kxk: 0 < k < N}. Thus, it follows that
N
N LY , 2 2 -~ 2
9Ol < KN +1) [l6l13 Y ( j) [ = et et
=0 R

Using the Cauchy—Schwarz inequality, we have
N

N [ [ | RN
oo < KV ol 3 () ([ - overemeaz)
R

=0

1/2
X (f 6—27#226—2777(12—1)2(132)
R

N N 9 1/2
= wv e o 3 (V) ([ermiena)
—o \J R
2 N N 1 2
=K(N+1) |¢l3 e_"f”TZ( .)Bj/e-”‘fa@z—” )dz
=0 J R
N

2 N 2
Kyl et (Vg [ enta:

J=0

LK(N+1) gl e i (N )B
= — +1 e 1"y , ~
V2 ? im0 \J !
.2
= Cle*’]’:ﬂ'ij

[V

N
Cr = BOERg18 52 (3)B; and B, = (Jy 2oz
J= .

where O

We shall now prove Hardy’s type theorem for the Fourier transform for connected
nilpotent Lie groups having noncompact center. Consider Vk = [& — o5&+ 55l for every
natural number k, and fix a real number &. For m > 2k, choose a C function vk, on real line
such that the support of vk is contained in Vi, viim= 1 on [é&1- 1/2k + 1/mé& + 1/2k - 1/m]

and 0 < wvm < 1. By the Plancherel inversion theorem, there exists
u € L'(R) such that @, = Vkm,, .
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For f€ L1(G), consider fim= ukxm* fand define Fym: G = C by

Fim(X) =Z (fxm* fim*)(x2) dz, X € G. T

Next, we modify [2, Lemma 3.1] in order to prove Theorem 3.1.
Lemma 3.5. Letf: G — C be a measurable function satisfying condition (i) of Theorem 3.1.
Then

lim  kFim(e) = 0.

km—oo

Proof. For fix
zZ,w Ek,m(Z,w,y) = /f(f,z,y) (/ uk,m(s)(uk,m * f)(t‘l‘SU),’y)dS) dt. eET andy eEY
R R

, define
Then as proved in [2, Lemma 3.1], we have

Fixm(e) =Z Z Exm(zw,y)dz dw dy (3.2)

YT2
and
Ep(z,w,y) = lim Ep,,(z,w,y)

m—roQ

€1+1/2k —
= /f(t, Z,1) / Weon (8) U (T, 8) f(t + s, w,y)ds dt.
JR . ‘51—1/2k
1 1

Now yw(t + s) = 0 foralls € (€1 — 55§ + 3¢] whenever t /€ [z L], and if t € [, K],
then

xvit + ) = Xl&-t-1/2k&-t+1/2k] S X[6-3/2kE+3/2K].
Using condition (i) of hypothesis of Theorem 3.1, we compute

1/k &1+3/2k
|Ex(z,w,y)| < / |f(t, 2, y)] (/ |f(t+ s, w,y)|ds) dt
3

—1/k | —3/2k

R 1/k
s§mu[ (¢, 2 ) ldt

1/k
30 - l/k ‘ —aTt?
s&mumw[/u+m% *
. 1/k

3C

<22 1l 6().

(3.2) Therefore, from (3.1) and (3.2), it follows
that
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lun | Fre.m(€)] < / / |Ex(2z,w,y)|dz dw dy

3C
<52l [ o) dy.
Y

lim Fj.(e) = 0.
Hence,k.m—oo K () O

It may be observed that the proof of Theorem 3.1 now follows from the technique used in
[2, Theorem 1.1]. For the sake of completeness, we briefly sketch the proof. For fix & € R,

&m[(LWM | a(F)lls dif

from [2], we have n2 land

[wm»mwgw

Xy

<C) (/ [PFIL A+ [[nll*)™ exp(=28(n* + 15 + |7i”|2))d7]")

nez* s

where V' = Piti>2 RXix. Let 0 < § < . Since Pfe Wis a polynomial function in n, there exists a

constante K >0 such that for all n

[PAim|(1 + InlI)Nexp(-2(8 - 8)lInll?) < K.

As proved in [2], we have
9(&)| < Dexp( 2063)-

for all &€ Rand D > 0. By Lemma 3.4, for all t € R, we have
lg(©)] < Cie-yez2

for some C1> 0 and 0 < y < a. Since af > 1, we can choose y and § such that y§ > 1. Then by
Hardy’s theorem for R, we get g = 0 a.e. Indeed, g is the integral of a positive definite
function/s * & on R which implies that f= 0 a.e. and this completes the proof.

We conclude this section by remarking that if G is a connected nilpotent Lie group that has
no square integrable irreducible representation and all the coadjoint orbits in g« are flat, then
Hardy’s type theorem holds for G. Let K
be any compact central subgroup of G. Then H = G/K has no square integrable irreducible
representation and also satisfies the flat orbit condition. By Lemma 3.3, it is enough to prove
Hardy’s type theorem for such group H satisfying H¢ = T. Then H must have a noncompact
center and by Theorem 3.1, H satisfies Hardy’s type theorem. Also in view of [2, Proposition
4.1], it is easy to see that Theorem 3.1 does not hold for nilpotent Lie groups having an
irreducible square integrable representation in particular reduced Weyl-Heisenberg group,
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low-dimensional nilpotent Lie groups Gs,1/Z, Gs3/Z, and Gse/Z. For more details of such
groups, one may refer to [20].

4. Analogue of Hardy’s theorem for the Gabor transform

In this section, we deal with an analogue of Hardy’s theorem for the Gabor transform.
Lemma 4.1. Let G be a second countable locally compact group. For i € L%(G) and x € G,

define fy*: G — C such that

fo ) =) Y(x-).

If fy*= 0 a.e. for almost all x € G, then either f=0a.e. or) =0 a.e.

Proof. Let us assume that y is a nonzero function in L2(G). There exists a subset M of G with
measure zero such that for all x € G\M, fy*= 0 a.e. Indeed G\M is dense in G and G is second
countable, so we can take a sequence (x;)jen contained in G \ M, which is dense in G. Let

- }
2|[¢]|so J .

Then VV'is a nonempty open subset of G and x;V = G. Consider the function

V= {t e G:|U(t)

iSeN

hit) =Y %W(x;]m, el

JjeEN
Clearly h is a strictly positive function on G. Moreover,

0< /( |f(O)|h(t) dt = /GZ 213|f(t)||’f/)(ilfjlt)| dt

JEN

1 u'[,']‘
ZE/G”?? ()] dt — 0.

JEN

Hence, Rq |f(t)|h(t) dt = 0, which implies that f - h = 0 a.e. Since h is strictly positive, it
follows that f=0a.e. o

Theorem 4.2. Let f be a measurable function on R” such that |f(x)| < Ce-emx2for all x € R»
and let y be a window function. Also assume that for almost all
y€ERn
|Gyf(y,€)| < nye Pz forall £eRn,
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where a,f5,C, and 7, are positive scalars and n, depends upon y. If af > 1, then either f = 0 a.e.
ory=0ae.
Proof. For each y € R, define the function Fy: R — C such that

Fy(x) = fy’* (f?)*(x). Then for each £ € R, we have

F(©)= JIQ = Cufly.)? <mp el
Also, for each x € R?, we obtain

F,(@)] < / RO )] de
= [ 1@l 1wt -l 15 - )l e — 2~ )

< [ c2 ety )

. llz 112 ,
=02 [ et ARy ) oy — )| d
]Rn

(it —x—y)|dt

)2

<C? et =)

Yt —y—x)| dt
2 7a7rw / [y *
=7 e ([« [) ()
—ourrM / *
< C? e || Y] (Yoo
Taking C1=max{n,? C2Il || * |P|*ll«}, then

ll=12

o lzl?
[Fy(2)| < Cie™™ 2 forall x e Rr

and
[Fy(€)] < Cre ™ gor all e Ry, ;

Using Hardy’s theorem for R , it follows that F,= 0 for almost all y € R which further implies
that f,»= 0 for almost all y € R~ Therefore, using Lemma 4.1, either f = 0 a.e.ory = 0 ae.
O

Theorem 4.3. Let G be a connected and simply connected nilpotent Lie group with
noncompact center. Suppose that y € C(G) and that f € L2(G) satisfies

| Gyf(x, 1) IHs < Cx e-npiéllz,
where Cxis a positive scalar depending on x. If 8 > 0, then either f=0a.e.or =0 a.e.

Proof. For y = (y2,y3,...yn) € R"-1, define a function f;: R, C such that
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fulan) = flexpe Xy + )y, X;))

j=2
For z € G, define a function F,: R — C given by
F@) = [ (5 (Ui dy
As ) € Cc(G), therefore f,zhas compact support. Moreover,

Fe) = [ () Uita) dy

=f /fj(t,y)m dy dt
r-1 JR
= f{* (iL] 0)

(V]

Therefore, F, is a continuous function with compact support, say K.
Choose @ > 0 such that @B > 1. Since the @1 — exp(—ami) functionattains minima

on K, therefore r < e~ for some r > 0. Also, there exists C; > 0 such that
|Fz(x1)| < Cy, forall x; € R. Choose C'> 0 satisfying rC'> C1 and therefore for each x € K, we

obtain

‘Fz(xl” < 01 < ’J"Ci < C'e—wamfl
and for xi € R \ K, we have F,(x1) = 0. Also fy?€ L' n L2(G) and

ll7ze(foz) lIHs < Gyf(x,me) lIHs < Cxe-npliéliz.

Using [18, Lemma 2], we get [F:(&)l < ce 0 yhat for some ¢ > 0. Therefore,

using Hardy’s theorem for the Fourier transform, the function F;= 0 a.e. Since F;is integral of

a positive definite function( /&)y * (f7); on R , therefore (f47),= 0 a.e. This holds for all z € G,
which further gives that either f=0a.e.or=0

a.e. O
Corollary 4.4. Let G be a connected and simply connected nilpotent Lie group. Let Y € C(G)
and f € L%(G) such that

| Gyf(x,1w¢) llHs < Ce-n(alxiz+bligl2)/2

for all (x,§) € G x W, where a,b, and C are positive real numbers. Then either f= 0 a.e. or y =

0a.e.

5. Beurling theorem
In the next theorem, we prove a result of the Beurling type theorem.

Theorem 5.1. Let G be a connected and simply connected nilpotent Lie group and let i €
Cc(G) and f € L?(G) be such that
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Z

7 1Gyf(x,72) s enIxl+11) PA(E) dx dé < oo, (5.1)

G W
Then either f=0a.e.ory =0 a.e.

Proof. From (5.1), there exists a zero set M c G such that for all x € G\M, we have

Z | Gyf(x,1¢) s emlixlz+IEI2) PAE) dE < oo, (5.2)

w
Forxe G\ M, we consider the function fy*and compute

|fux(2)| Lz |A\px (7€) lIHS e2miznalPf(€) dz d&

GW

< ZZ |fux(2) | WAux(e) lIHs entiziz+1a1) PAE) dz dé

G W

= Z Z |fux(2)| 1Gyf(x,m¢) lIHs eniziz+ian) PA(E) dz dé

= 7 |fy*(2)|e™N2dz Z || Gyf(x 1) lIHs eI Pf( &) dE. (5.3)

G w

Also,
/f z)|e7’” 2 dz—/ |f()||[v( ‘BWI\ZH dz

<(/ f(z)Fdz) ( [ g dz)m. (5.4)

As P € C(G), so ¢ - emlze L2(G) and hence Re |fy*(z)|e™“lzdz < oo. Thus, using (5.2), (5.3),

and (5.4), we get

f / 2] 150 s THHELP £(€) d de < o
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Using the Beurling theorem for connected and simply connected nilpotent Lie groups [27], it
follows that f,*= 0 a.e. forall x € G \ M. Hence, by Lemma 4.1, either f= 0 a.e.ory = 0 a.e.

O

Using [1, Theorem 3.1], a careful reading of the proof of the above theorem shows the
following result.

Theorem 5.2. Let G be an exponential solvable Lie group with a nontrivial center, and let y
€ C.(G) and f € L2(G) such that

[ 1Kt me) s €01 dar d < oo
JGJW

’

where Kis a semi-invariant operator [1, 2.6]. Then either f=0a.e.or ) =0 a.e.

Remark 5.3. Let G be a connected nilpotent Lie group with a square integrable representation.
Then as proved in [8, Theorem 5.1], there exist nonzero functions

fand ¥ in L2(G) such that for all x € G and £ € W, , 2

Il I < (@) +bien ) 2,
Gyf(x,me) Hs Ce

where a and b are nonnegative real numbers with ab > 1 and C is a positive constant. Fora,b >
1, it follows that

Z |Gyf(x, 1) lIHs encixiiz+ngiz)/2 PAE) d€ dx < co.

G W

Thus, the analogue of Beurling theorem does not hold for G. Several examples of such type of
group exist including Weyl-Heisenberg group, low-dimensional nilpotent Lie groups Gs,1/Z,
Gs,3/Z, and Gs,¢/Z. More such examples can be obtained using the following result.

Proposition 5.4. Let G be a group of the form G = A x K x D, where A is a connected nilpotent
Lie group, K a compact group, and D a type | discrete group. If the Beurling theorem fails for
A, then it also fails for G.

Proof. Since the Beurling theorem fails for A, there exist nonzero functions f;ip € L%(A) such

that

Z | Gyf(x,18) lIHS en(ixiiz+i12)/2Pf( &) dx d€ < oo.

A W

Define functions EW : G — C by

Flxkt) = fl)xe(t) and Y(xkt) = P(x)xe(t),
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where e is the identity element of D. Let {e%; },{e’; }, and {e?;} be orthonormal basis of Hilbert
spaces corresponding to the representations 6 and y of A,K, and D, respectively. Then
(GoF (2, kt,me, 0.

and 6 =1, _ ) {Guf(e,me)el ey ift=e
0 otherwise

Also, using [19] or survey in [21], D is a bounded dimensional representation group. So, there
exists a positive scalar M such that dim(y) < M for all y € D.b Therefore, we have

IGwF(x ke msLy)ll?Hs

< ZZZKG@F(:E, ke, me, I,7)e @el, ® e;{,e_g- Rel® e;{)|2
i, mn pq

=Y 3D UGS (@ me)es, €5) P < MGy f () Is.
i,j m,n p.gq

Thus,

LX) e

HS

deEK
x em U HIER2 P p (&) da de dE dry

= / / / ]:‘ ”G%‘Jf(x?ka €, g, Iv ﬁ/)”HS eW(H‘LH2+‘|£||2)/2Pf(£)dx dk dé- d/}/
AJK JIJWJID

= / f |Gy f (@, 7e) |lng €™ I=PHEP2 P (e)de de < oo,
AJW

Hence, the Beurling theorem fails for G. o

Remark 5.5. Let G be a compactly generated abelian group. Then by the structure theorem
[16, Theorem 9.8], G is topologically isomorphic with R» xZm xK for some nonnegative
integers n,m and some compact abelian group K. Let A be a connected nilpotent Lie group for
which Beurling’s theorem fails. Then there exist nonzero functions F and ¥ € L2(A x Rn)
such that either

L7 .7 Z IGyf(x.t, e yu) lIHs entixiz+ciz+gn)dx dt d€ du < oo (5.5)
ARWR®
or

27 7 Z | Gyf(x t, e yu) lIHS en(ixliz+glz+lulz)dx dt d€ du < oo. (5.6)
ARWRr
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Consider the functions F(x,t) = flx)e-atizand W(x,t) = P(x)e-2itizfor some fixed a € R+ and

nonzero functions £y € L2(A) satisfying
Z
Z | Gyf(x, 1) lIHS en(ixliz+ng12)/2Pf( &) dx d€ < oo.
A W

Then, for a > m, functions F and W satisfy (5.5) and for a < m, F and ¥ satisfy (5.6). Thus, by
Proposition 5.4 and the structure theorem, it follows that if Beurling’s theorem fails for the
connected nilpotent Lie group A, then the above functions F and W exist on A x G, where G is
a compactly generated abelian group.

Next we look at an analogue of Beurling’s theorem for the Fourier transform on abelian
groups. Let G be a second countable, locally compact, abelian group with into a direct
productb G = R*x S, wheren = 0 and S contains a compact open dual group G. Using the
structure theory of abelian groups [16], G decomposes
subgroup. Hence, the connected component of identity of G is noncompact if and only if n >

1. Leth R" x Shas a noncompact connected component of» identity. The dual groupe G?

Nis identified with27x Gb = Rc x Sb.

Theorem 5.6. Let f

L] [irasifie i o is d ay < oo, 5.7)
[=0ae Then

Before proving the above theorem, we shall prove some lemmas.

Lemma5.7. Let fe L1n L2(R" x K), where K is a compact group satisfying

7k Z Ly Ifx5)| 1€ @ y()llHs e2rlx4l dx dé ds dy < .

Rn Rn K

Then f=0a.e.

Proof. For y € Kb let Hyyibe the Hilbert space of dimensionyjy» — d, with orthonormal basis

{83}2511. For fixed e and e, define f: R C such that
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[(X) = Z flixk)  y(k)-eri,er;) dk.

For & € Rn, we obtain

(@ y(Peney) =ZZfxk)e2mici( y(k).er,ey) dxdk
Rn K

= [ H@e T da = £(©)

(5.8)
Thus, it follows that
7
Z H@)] Lf (©)]e!dx d&
RnRn by 2mx§ HS 2mx &
S ZroZre ZK | K) | 1€ Q y(NII el ldxdk dé& < o,

andHence, using the Beurling theorem foré € Ra, using (5.8)n, it follows that R({ @), we
gety(fei,efyy) = 01= Oa.e. For fixedzfor all 1 < ijy<€dKb.

Since y € Kand ¢ € R are arbitrarily fixed and f€ L NL (G), therefore using
(2.1), we conclude thatb f=0n a.e. O

Lemma 5.8.nLet1 M = R x H(5.7be an open subgroup of an abelian group), then so does flum.
G=Rx s If fE L (G) satisfies

Proof. Since S/H is compact and S/H is identified with S/H [16, Theorem 24.2],
we have d dd

|
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STH 1 if
/A F(&,xn) dn / / f(x, 8)e 2™ x(s) (/A n(T')dn) dx ds
S/H nJs S/H
. = [ [ s N da ds = Flutedu)
Therefore,
Z

RoL o in ZHRLLebtn L | fiotib| MZs/(amx, ) | |mfb|MZ (5/HE ya )bb | 2en2xmlexdl dx dh dE dyzrxzgnx ¢

Rt Al (h)] | f&xn) dn| e dx dh dE dy
R« R A M| [fi&xm)| e dx dh dé dy dn
= Zraxs Zraxsb|f{x.h)| [ (Exn)| e ! dx dh d& dy < . O

Using Lemmas 5.7 and 5.8, we now prove Theorem 5.6.

Proof of Theorem 5.6. Let s € S be arbitrary. Iffs, whereffes(x,tL1) =N L2f((Gxst) satisfies
the). Since S condition of Theorem 5.6, then so does has a compact open subgroup K,
therefore using Lemmas 5.7 and 5.8, we get fs|r.k= 0 a.e. Thus, we get f=0a.e. O

For z € G and w € Gb, we define the: translation operator:1 T,on L2(G) as

(THD) =z y)

and the modulation operator M, on L%(G) as

Mof)(¥) = f¥) 0 (),
where f € L2(G) andy € G. For fip € L?(G), the following property of the Gabor transform can

be easily verified:
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Gy(MoTf)(xy) = (w1y)(z™) Gyflzxw1y) (5.9) forall x,z € G and y,w € GDb
In the next result, we give a Beurling theorem version for the Gabor transform on abelian
groups by reducing it to the Fourier transform case.

Theorem 5.9. Let f € L2(G) and let i be a window

Z function such that
s R® §
f=0ae ory=20
777 |Gyf(x,5,€,0)| entixiz+ig12)/2 dx ds d€ do < oo.
Rn
Then eithera.e.

Proof. (k). (2,t) € R" x S and (£,7), (¢, x) € R* x § For, define
xkéy) Floten (2, k&) = G Y(k) Gp(Me T f)(

x Gy(MexTzof) (=%, k-1,-&y-1).

The function Ficp is continuous and is inL' NL*(R" xS xR % S) Moreover,
using [8, Lemma 3.2], we have

F(z:i:C.-X)(wv 0, y,v) = F(Z,I:C,X)( Y, U_l? w 6)—. (5.10)
Using (5.9), Fieon(xk&y) can be written as
Faon(xksy)
= ezniex Y(k) e-2mi(e-0z (x-1y) (t-1) Guf(x — z t-1k,& - {x-1Y)
x e-2mi(-¢-0)z (Y-1y-1) (t-1) Gyf(-x — z,t-1k-1,-& = {x-1y-1). (5.11)

Applying (5.10) and (E}.ll), we have

/ _ / _\/ / A|F(z,i.CgX)(x:k7§:7)| |F(ZataC,X)(wr(Siyrv)|
RrxS xS xS JRMxS
x eZmlrwteul g dle d¢ dy dw dS dy dv

<[ [ @kl -p o)
RrxS JR*"%xS JR"xS JR" xS
w e zPHIEP+HI* W) gy dRe d¢ dvy dw ds dy dv

2
- (/ / N Feacoo (@ k&)™ I dg dg dg ‘h’)
nxS nxS

(/ / NGy (=2 — 2, 7k == ¢y i)
xS nx S
X |Gy f (2 — 2,87k, € = oI dy i dg d’)f)

2
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B (/ f g |Gﬂf(—(1',‘ - 22’ t_Qk_]'l _é. - QCJ ﬁ/’_]X_Q)l
nyg nyw§
2 2 2
|Gy f (. k, &) |em Itz HIEI®) o g ag d”/)

_ lezw(nz|\2+||c:||2)(H * H(—Qz,t_z, —2(577_2))2 < 00,
where H(x,s,§,0) = |Gyf(x5¢0)|e"lrizi82)/2. Thus, using Theorem 5.6, it follows that Fi;¢n =

0 for all (zt,¢x). Since,

F(—z,t-l,—(,)m) (0,8,0,1) = e4chX(t)2 (Gl/’f(Zl t,(,)())z,
therefore, Gyf = 0, which using (2.3) implies that either f=0a.e. or =0 a.e. m

We shall next prove an analogue of Beurling’s theorem for the Gabor transform for the
groups of the form R” x K, when K is a compact group.

Theorem 5.10. Let i € L2(R" x K), where K is a compact group such that

Z7X Gyf(x,k,&Y)IHs entixiz+igz) /2 dx dk d€ < oo.

RnK Rn
veK

Then either/ = 0 a.e. or 1) =0ge,

Proof. Assume that ¢ = ' . For w,y € Kb, let Hoand Hy be the Hilbert spaces of dimensions d

. w dw Y dw .
and dywith orthonormal bases {€:}iz1 and{€; }ils, respectively.

For fixed ey,ey, we define t: Rn—> Chy r s

T(x) = Z Y (xk) ( y(k)-ere¥s) dk.
K

Using the Holder’s inequality, it follows that T € LZ(R"). Fix y € K for which

=0 .For o€ K we can write b

dy
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]/(k) eyr= XCj,rk eyj
j=1
and Yy o=Xms, (5.12)

6€EKs
where K; is a finite subset of Kand C;*’s and ms’s are scalars (see [16]). For

fixed € and €7 we define g : Rib— C such that

Clearly, g € L2(Rn). g(z) = / [l k) {(w(k)*es,ev) dk. Consider a function ¢ : R"x K
— C defined by K

P(xk) = P(xk) ( y(k)-erers) .

Then ¢ € L2(R"x K) and Gyf(xk&0) is a Hilbert—Schmidt operator for all,(%: k) € R" < K¢

and for almost all (§,0) € Rc x Kb.

Foro  Kand fixed¢!: €7, using [8], we have
dy

( Gof(xk,&o0)ere’m) =X sX Cikms( Gyf(xk E6)ed,edms) .
j=1 €K,

Let M, =max{|ms|: § € K5}. As |Ks| < dyds < o0, we have M, < oo, Using
the Cauchy-Schwarz mequallty, we have
G f(x, k. &, 0)|Es = Z (Gof(a k& o) el

I,m=1

d~

< 3 (530 1Ch me (Gufte bl e )

Iim=1 j=1 deK,

< 3021l (55 HGu o k6,04, 0F)

I,m=1 j=1deK,
<> M K,|d, ZZHGJMU)IIQ
Im Je K

2967 |Page



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES
ISSN PRINT 2319 1775 Online 2320 7876

Research paper (R0 PATTNNSWATENE-LI NV UG C CARE Listed ( Group -1) Journal Volume 11, Iss 9, Sep 2022

=1 j=1 a
: 2
<& M2 K| (D Guf (k. €.0) us)
deK, .

Hence, it follows that

||G¢f(ﬂf,k‘,£,0')||}-]s S CG,’Y Z ”wa(.’]f, k=§a5)”HS
deK, , (5.13)

where C,, = ds M, |Ks| dyis a constant depending on o and y. Now for every

o € Kb, using (5.13), we obtain (24 &2)2

Z
Z
ZKZ Gyf(x,k, & 0)llHs e I I dx dk d&¢
RnRn
< CoyZKZ X 1Gof 5k E8) lIHs etz IE)/2 e dk dE < oo, (5.14)
Rn Rn
6EKs

For x,¢ € Rn, th_e function G-g is given by
Grgl,) = [ (Gl @ )e5e5)

K
Thus,
Gg(x8)| < Z NGuf(x,k,Ew) s dk.
K
On using (5.14), it follows
Z
Z | Gzg(x,&) | entixiz+en2)/2 dx d€
RnRn
S ZnZnZ 1Gef(x,k,&w)lIHs en(ixiz+igiz)/2 dx d€ dk < .
RRK
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Then by the Beurling theorem for the Gabor transform on K" (see [H]) or Theorem 5.9

above, we conclude that g = 0 a.e. Since w € K is arbitrary, we get f=0 a.e. m

Remark 5.11. Using Theorem 5.2, the above theorem can be proved for the group GxK, where
G is an exponential solvable Lie group with a nontrivial center and K is a compact group in
the following setting:

Let fe€ L2(G x K) and ¢ € C.(G x K) such that

/ / f S KeGo f (@, ke, 1) s e IFHED dr dk de < oo
JGJK JW .

'761?
Then either/ = 0 a.e. or ¥y =0 g,
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