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Abstract: 

The Cucker-Smale model for collective animal behavior is studied as a generalization. A 

system of delayed stochastic differential equations is used to formulate the model. It includes 

two other processes that are present in animal decision making but are sometimes overlooked 

in modeling: (i) individual behavior stochasticity, or flaws, and (ii) individual delayed 

responses to environmental cues. Using an appropriate Lyapunov functional, sufficient 

conditions for flocking for the generalized Cucker-Smale model are given. As a byproduct, 

one obtains a novel result concerning the delayed geometric Brownian motion's asymptotic 

nature. The paper's second section presents the findings from systematic numerical 

simulations. They not only show the analytical conclusions, but they also allude to a behavior 

of the system that is a little surprising—namely, that flocking might be made easier by adding 

an intermediate time delay.  

Key words: geometric Brownian motion, noise, delay, flocking, asymptotic behavior, and 

ucker-Smale system. 

1. Introduction: 

Collective coordinated motion of autonomous self-propelled agents with self-organization 

into robust patterns appears in many applications ranging from animal herding to the 

emergence of common languages in primitive societies [31]. Apart from their biological and 

evolutionary relevance, collective phenomena play a prominent role in many other scientific 

disciplines, such as robotics, control theory, economics, and the social sciences [4, 10, 35, 

26]. In this paper we study the interplay of noise and delay on collective behavior. We 

investigate a modification of the well-known Cucker–Smale model [5, 6] with multiplicative 

noise and reaction delays. We consider N ∈ N autonomous agents located in a one-

dimensional physical space. The agents are described by their phase-space coordinates (xi(t), 

vi(t)) ∈ R2, i = 1, 2,...,N, where xi ≡ xi(t) ∈ R and vi ≡ vi(t) ∈ R are the time-dependent 

position and velocity, respectively, of the ith agent. The (fixed) reaction delay will be denoted 

by τ ≥ 0, and we adopt the following notational convention. Convention 1. Throughout the 

paper, we denote by xi the position xi evaluated at time t, i.e., xi = xi(t), and by xi the same 

quantity evaluated at time t − τ, i.e., 

xi = xi(t − τ). The same holds for the velocities vi = vi(t) and vi = vi(t − τ). We will also write 

x = (x1, x2,...,xN ) ∈ RN (resp., v = (v1, v2,...,vN ) ∈ RN ) for the vectors of locations (resp., 

velocities) of the agents.  

The system of equations that we will study is the following system of delayed Itˆo stochastic 

differential equations: 
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for i = 1, 2,...,N. The parameters λ > 0 and σi ∈ R, i = 1, 2,...,N, measure the coupling and 

noise strength, respectively, and dBt i , i = 1, 2,...,N, are independent white noise scalars. The 

function ψ : [0, ∞) → [0, ∞) models the communication rate between agents and is assumed 

to depend on their mutual distance. We note that the scaling by N −1 in (1.2) is significant for 

obtaining a Vlasov-type kinetic equation in the mean-field limit N → ∞; see, for example, 

[14]. Our aim is to investigate (1.1)–(1.2) for general values of reaction delay τ and noise 

strength parameters σi, i = 1, 2,...,N.  

    The standard Cucker–Smale model [5, 6] is a special case of (1.1)–(1.2) with σi = 0 and τ = 

0. It was introduced and studied in the seminal papers [5, 6], originally as a model for 

language evolution. Later the interpretation as a model for flocking in animals (birds) 

prevailed. In general, the term flocking refers to the phenomena where autonomous agents 

reach a consensus based on limited environmental information and simple rules. The 

communication rate ψ introduced in [5, 6] and most of the subsequent papers is of the form 

 

The Cucker–Smale model is a simple relaxation-type model that reveals a phase transition 

depending on the intensity of communication between agents. If β < 1/2, then the model 

exhibits so-called unconditional flocking, where for every initial configuration the velocities 

vi(t) converge to a common consensus value. On the other hand, with β ≥ 1/2 the flocking is 

conditional; i.e., the asymptotic behavior of the system depends on the value of λ and on the 

initial configuration. This result was first proved in [5, 6] using tools from graph theory 

(spectral properties of graph Laplacian), and slightly later reproved in [14] by means of 

elementary calculus. Another proof was provided in [13], based on a bound by a system of 

dissipative differential inequalities, and, finally, the proof in [3] is based on bounding the 

maximal velocity. 

Various modifications of the classical Cucker–Smale model have been considered. For 

instance, the case of singular communication rates ψ(s)=1/sβ was studied in [13, 27]. Motsch 

and Tadmor [24] scaled the communication rate between the agents in terms of their relative 

distance, so that their model does not involve any explicit dependence on the number of 

agents. The dependence of the communication rate on the topological rather than metric 

distance between agents was introduced in [15]. The influence of additive noise in individual 

velocity measurements was studied in [12] and [34]. More complicated noise terms can be 

derived by considering details of interactions of agents with their environment [8, 9]. 

Stochastic flocking dynamics with multiplicative white noises was considered in [1]. Delays 

in information processing were considered in [21]; however, their analysis applies only to the 

Motsch–Tadmor variant of the model. Synchronization and coordination systems with noise 

and delays were studied also in [16, 17, 18, 28, 29].  

In this paper, we are interested in studying the combined influence of multiplicative noise and 

reaction delays on the asymptotic behavior of the generalized Cucker– Smale system (1.1)–
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(1.2). In particular, we derive a sufficient condition in terms of noise intensities σi and delay 

length τ that guarantees flocking. Our analysis is based on the construction of a Lyapunov 

functional and an estimate of its decay rate. To prove our main results, we make an additional 

structural assumption about the matrix of communication rates which, loosely speaking, 

means that the communication between agents is strong enough. 

The paper is organized as follows: In section 2 we adopt certain simplifying assumptions for 

the model (1.1)–(1.2) that will facilitate its analysis, and define what is meant by flocking in 

the context of this model. Moreover, we point out that the model includes delayed geometric 

Brownian motion as a special case, which provides an insight into which qualitative 

properties may be expected from its solutions. In section 3 we derive a sufficient condition 

for flocking in terms of the parameters λ, σi, and τ, based on a micro-macro decomposition 

and construction of a Lyapunov functional. Moreover, as a by-product of our analysis, we 

provide a new result about the asymptotic behavior of delayed geometric Brownian motion. 

Section 4 is devoted to a systematic numerical study of the model. First, we focus on 

simulation of delayed geometric Brownian motion; in particular, we study the dependence of 

its asymptotic behavior on the delay and noise levels. Then, we perform the same study for 

system (1.1)–(1.2). This leads to the interesting observation that, for weak coupling and small 

noise levels, the introduction of intermediate delays may facilitate flocking. A systematic 

study of this effect concludes the paper. 

2. Model simplifications. In the generic setting, the communication rates ψ(|xi − xj |) in (1.2) 

are functions of the mutual distances between the agents. However, the analysis in section 3 

is based on a certain structural assumption about the communication matrix ψij = ψ(|xi − xj |), 

and the particular form of the dependence on the mutual distances is irrelevant. This 

structural assumption is not needed in section 4, where we present a systematic numerical 

study of the general model (1.1)– (1.2).  

We consider the rates ψij = ψij (t) as given adapted stochastic processes, so that (1.2) 

decouples from (1.1). Moreover, we assume that ψij are uniformly bounded, 

 

Thus, we finally arrive at the stochastic system of delayed differential equations that we will 

study analytically in section 3, 

 

for i = 1, 2,...,N, with the agreed notation ψij = ψij (t − τ). The system is supplemented with 

the deterministic constant initial datum v0 ∈ RN , 

 

Let us note that we interpret the noise term in (2.2) in terms of the Itˆo calculus [25, 22]. 
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Theorem 2.1. The stochastic delay differential system (2.2) with initial condition (2.3) admits 

a unique global solution v = v(t) on [−τ, ∞), which is an adapted process with E   T −τ |v(t)| 2 

dt  < ∞ for all T < ∞, i.e., a martingale. 

 Proof. The proof follows directly from Theorem 3.1 of [22] and the subsequent remark on p. 

157 there. Indeed, (2.2) is of the form 

 

for suitable functions F and G. In particular, the right-hand side is independent of the present 

state v(t), so that the solution can be constructed by the method of steps. The second order 

moment is bounded on (−τ,T ) because of the linear growth of the right-hand side of (2.2) in 

v.  

We now define the property of asymptotic flocking for the solutions of (2.2)–(2.3).  

Definition 2.2. We say that system (2.2) exhibits asymptotic flocking if the solution (v(t))t≥0 

for any initial condition (2.3) satisfies 

 

where E[·] denotes the expected value of a stochastic process. 

2.1. Simplified case with ψ ≡ 1. To get an intuition of what qualitative properties we may 

expect from the solutions of (2.2), we consider the case when the communication rate is 

constant, i.e., ψij ≡ 1. We also assume that σi is equal to the same constant σ ∈ R for all i = 1, 

2,...,N, i.e., σi ≡ σ, and, moreover, that v0 i = v0 for some v0 ∈ R and all i = 1, 2,...,N. Then, 

defining Vc(t) := 1 N N i=1 vi(t), we obtain 

 

Since, by assumption, Vc(t)−vi(t) ≡ 0 for t ∈ (−τ, 0], we have Vc(t) ≡ v0 for all t ≥ 0. 

Consequently, (2.2) decouples into N copies of the delayed SDE 

 

where we denote w := vi − v0 for any i = 1, 2,...,N. We are not aware of any results 

concerning the asymptotic behavior of (2.4). The method developed in [2] suggests that 

 

i.e., formally, rλ solves (2.5) subject to the initial condition w(t) = χ{0}(t) for t ∈ (−τ, 0]. The 

fundamental solution rλ can be constructed by the method of steps [30]; however, evaluation 

of its L2(0, ∞)-norm is an open problem. From this point of view, the analysis carried out in 

section 3 provides new and valuable information about the asymptotics of (2.4); see section 

3.4. Let us note that setting τ = 0 in the above criterion recovers the well-known result about 
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geometric Brownian motion [25]: the mean-squared fluctuation E[|w(t)| 2] tends to zero if 

and only if σ2 < 2λ. 

Finally, for the convenience of the reader, we give an overview of the qualitative behavior of 

solutions to (2.5) with λ > 0, subject to a constant nonzero initial datum (see, e.g., Chapter 2 

of [30]), as follows: • If λτ ≤ 1/e, the solution monotonically converges to zero as t → ∞; 

hence no oscillations occur. 

 • If 1/e < λτ < π/2, oscillations appear, however, with asymptotically vanishing amplitude. • 

If λτ = π/2, periodic solutions exist. 

 • If λτ > π/2, the amplitude of the oscillations diverges as t → ∞.  

Hence, we conclude that the (over)simplified model (2.5), corresponding to the delayed 

Cucker–Smale system with ψ ≡ 1 and no noise, exhibits flocking if and only if λτ < π/2. In 

the next section we derive a sufficient condition for flocking for the model (2.2) with given 

communication rates ψij satisfying (2.1). 3. Sufficient condition for flocking. In this section 

we derive a sufficient condition for flocking in (2.2) according to Definition 2.2. Our analysis 

will be based on a construction of a Lyapunov functional that will imply decay of velocity 

fluctuations for suitable parameter values. However, we will have to adopt an additional 

structural assumption on the matrix of communication rates (ψij )N i,j=1.  

Before we proceed, let us briefly point out the mathematical difficulties that arise due to the 

introduction of delay and noise into the Cucker–Smale system. The “traditional” proofs of 

flocking, for instance [5, 6, 14, 13], rely on the monotone decay of the kinetic energy 

(velocity fluctuations) of the form 

 

However, this approach fails if processing delays are introduced, since for (1.2) without noise 

(i.e., all σi = 0) we have 

 

One then expects the product (vi − vj ) · (vi − vj ) to be nonnegative for τ > 0 small enough; 

however, it is not clear how to prove this hypothesis. The introduction of noise leads to 

additional difficulties—in particular, the classical bootstrapping argument [5, 6, 13] for 

fluctuations in velocity fails in this case. Much as in [12], we circumvent this problem by 

adopting, in addition to the boundedness (2.1), a structural assumption about the matrix of 

communication rates. We define the Laplacian matrix A(t) ∈ RN×N by 

 

and note that A is symmetric, diagonally dominant with nonnegative diagonal entries; thus it 

is positive semidefinite and has real nonnegative eigenvalues. Due to its Laplacian structure, 
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its smallest eigenvalue is zero [5]. Let us denote its second smallest eigenvalue (the Fiedler 

number) by μ2(t). Our structural assumption is that there exists an > 0 such that 

 

This can be guaranteed, for instance, by assuming that the communication rates are uniformly 

bounded away from zero, ψij (t) ≥ ¯ ψ > 0, since there exists a constant c > 0 such that μ2(t) ≥ 

c ¯ ψ; see Proposition 2 in [5]. Moreover, we assume that the matrix of communication rates 

is uniformly Lipschitz continuous in the Frobenius norm; in particular, there exists a constant 

L > 0 such that 

 

with the notation A := A(t), A := A(t − τ) and where · F denotes the Frobenius matrix norm. 

Then, with the definition (3.1), we put (2.2) into the form 

 

Our main result is the following. 

 Theorem 3.1. Let A be given by (3.1) satisfying (2.1), (3.2), and (3.3). Let the parameters λ > 

0 and σ2 max := max{σ2 1, σ2 2,...,σ2 N } satisfy 

 

Then there exists a critical delay τc = τc(λ, σmax, L, ) > 0, independent of N, such that for 

every 0 ≤ τ<τc the system (3.4) exhibits flocking in the sense of Definition 2.2.  

Moreover, if the matrix of communication rates A is constant, i.e., (3.3) holds with L = 0, then 

τc is of the form 

 

Remark 1. The system (3.4) with constant communication matrix A can be seen as a 

linearization of the system (1.1)–(1.2) about the equilibrium vi ≡ v0 for i = 1, 2,...,N with 

some v0 ∈ R. Note that in this case the formula (3.6) for the critical delay τc does not depend 

on the particular value of in (3.2). 

3.1. Micro-macro decomposition. We introduce a micro-macro decomposition [14, 12] 

which splits (3.4) into two parts: macroscopic, which describes the coarse-scale dynamics, 

and microscopic, which describes the fine-scale dynamics. The macroscopic part for the 

solution is set to be the mean velocity Vc(t), 
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The microscopic variables are then taken as the fluctuations around their mean values, 

 

We denote w(t)=(w1, w2,...,wN ) ∈ RN . Then we have 

 

Since e is the eigenvector of A corresponding to the zero eigenvalue, we have Aw = Av. 

Then (3.4) can be rewritten as follows: 

 

The macroscopic variable Vc satisfies the following lemma.  

Lemma 3.2. Let (v(t))t≥0 be a solution of (2.2) subject to the deterministic constant initial 

datum (2.3). Then E[Vc(t)] ≡ Vc(0) for t ≥ 0 and E  _x0007_ T −τ |Vc(t)| 2 dt  < ∞ for all T < 

∞. 

 Proof. The boundedness of E  _x0007_ T −τ |Vc(t)| 2 dt  follows directly from the definition 

(3.7) and the martingale property of v(t) provided by Theorem 2.1. Using (3.1), we have 

 

Summing equations (3.4), i = 1, 2,...,N, using (3.7) and Aw = Av, we obtain that 

the macroscopic dynamics is governed by the system 

 

After integration in time this implies 

 

Since f(s) := (A(s − τ)w(s − τ))i is a martingale, we have E  _x0007_ t 0 f(s) dBs i  = 0 (see 

[22, Theorem 5.8, p. 22]). Thus we obtain E[Vc(t)] ≡ Vc(0).  

Remark 2. Note that (3.10) and (3.11) are expressed in terms of the w-variables only, and so 

they form a closed system, which is equivalent to (3.4). Clearly, due to (3.8), we have w · e = 

N i=1 wi ≡ 0. Consequently, it is natural to introduce the decomposition RN = e∈ e∈, where 

e is given by (3.9). We then have w(t) ∈ e∈ for all t ≥ 0.  

Lemma 3.3. Let A ∈ RN×N , N ≥ 2, be the matrix defined in (3.1), and assume that (2.1) and 

(3.2) hold. Then we have the following:  
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(a) The maximal eigenvalue of A is bounded by 2 (N − 1).  

(b)  We have |Au| 2 ≤ 2 (N − 1) uT Au for any vector u ∈ RN .  

(c) We have |w| 2 ≤ wT Aw ≤ 2 (N − 1)|w| 2 for any vector w ∈ e∈.  

(d)  For any vectors u, w ∈ e∈ and δ > 0 we have 

 

Proof. (a) The claim follows from the Gershgorin circle theorem. Indeed, since 0 < ψij ≤ 1, 

the diagonal entries satisfy 0 ≤ Aii ≤ N − 1, and j_x0007_=i |Aij | = Aii for all i = 1, 2,...,N.  

(b) The smallest eigenvalue of A is zero with the corresponding eigenvector e. The second 

smallest eigenvalue μ2 (the Fiedler number) is assumed to be positive 

by (3.2). Thus, A is a symmetric positive operator on the space e ∈, and there exists an 

orthonormal basis of e ∈ composed of eigenvectors ξ2, ξ3,..., ξN of A corresponding to the 

positive eigenvalues μ2, μ3,...,μN . Then, every vector u ∈ RN can be decomposed as 

 

Thus, due to the above bound on the eigenvalues 0 ≤ μi ≤ 2(N − 1), we have 

 

Since nonzero eigenvalues are bounded from below by (using (3.2)) and from above by part 

(a) of this lemma, we obtain 

 

3.2. Lyapunov functional. The proof of Theorem 3.1 relies on estimating the decay rate of 

the following Lyapunov functional for (3.10)–(3.11): 

 

where p, q are positive constants depending on λ, τ, and σi. 

 Lemma 3.4. Let the assumptions of Theorem 3.1 be satisfied. Then there exist positive 

constants p, q, and ε such that for every solution (w(t))t≥0 of (3.10)–(3.11) the Lyapunov 

functional (3.13) satisfies 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 
Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11, Iss  01, 2022 

 

1047 

 

 

Proof. We apply the Itˆo formula to calculate dwi(t)2. Note that the Itˆo formula holds in its 

usual form also for systems of delayed SDE; see [11, p. 32] and [20, 7, 23]. Therefore, we 

obtain 

 

With the identity dBt j dBt k = δjk dt (formula (6.11) on p. 36 of [22]), we have 

 

Consequently, summing over i, using w · e and the identity 

 

we obtain 

 

Consequently, we have 

 

Our goal is to estimate d dtE[L (t)] from above. First, we note that by the elementary property 

of the Itˆo integral [22, Theorem 5.8, p. 22], 

 

For the first term of the right-hand side in (3.15), we write 

 

and apply Lemma 3.3(d) with δ > 0 
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Using Lemma 3.3(c), we have 

 

Now we write for w − w , componentwise, using (3.10), 

 

Thus, we have for the expectation of the square 

 

An application of the Cauchy–Schwarz inequality and Fubini’s theorem for the first term of 

the right-hand side yields 

 

For the second term we use the fundamental property of the Itˆo integral [22, Theorem 5.8, p. 

22], 

 

Similarly, the third term is estimated as 
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Thus, we get from (3.16), estimating N−1 N ≤ 1, 

 

To balance this term with −2λ N wT Aw, we use assumption (3.3) and Lemma 3.3(c) in 

 

Collecting all the terms in (3.15) finally leads to 

 

then the above expression simplifies to 

 

We want −2 λ + λ δ−1 + 2 q 

                                                                                                                                                        

L −1τ + 1_x0005_ < 0. Substituting (3.17) into this inequality leads to a third order 

polynomial inequality in τ. This polynomial has all positive coefficients but the zero order 

one, which is c0 := 2σ2 max + δ−1λ − 2λ. If (3.5) is satisfied, then choosing δ > 0 such that 

 

makes c0 negative. Consequently, there exists a τc > 0 such that for any 0 ≤ τ<τc, 
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and we have to find τ such that −2 λ + λ δ−1 + 2 q < 0. Again, substituting (3.17) for p and q 

leads to 

 

The maximum value of the right-hand side is obtained for δ = λ(λ − σ2 max)−1, which is 

positive because of the first inequality in (3.6). Substituting δ = λ(λ − σ2 max)−1 into (3.19), 

we obtain 

 

Finally, resolving in τ leads to 

 

If the above sharp inequality is satisfied, there exists an ε > 0 such that −ε = −2 λ + λ δ−1 + 2 

q and, consequently, (3.14) holds. 

3.3. Proof of Theorem 3.1. An integration of (3.14) in time gives 

 

so that the last integral is convergent as t → ∞, and consequently, limt→∞ E[wi(t)] = 0 for all 

i = 1, 2,...,N. Using (3.8), we obtain 

 

and we conclude that asymptotic flocking in the sense of Definition 2.2 takes place.  

Remark 3. The original definition of asymptotic flocking [5, 6] involves, in addition to our 

Definition 2.2, also the group formation property for (1.1)–(1.2) given by 

 

where Xc(t) := 1 N N i=1 xi(t). The standard way [5, 6, 14, 13] of proving this result would 

be to estimate 
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and employ a bootstrapping argument to show that _x0007_ ∞ 0 E[|wi(s)|] ds < ∞. However, 

as noted above, it is not clear how to apply the bootstrapping argument in our setting. Note 

that we have _x0007_ ∞ 0 E[|wi(s)| 2] ds < ∞, but that does not imply _x0007_ ∞ 0 E[|wi(s)|] 

ds < ∞. 

3.4. Application to asymptotic behavior of delayed geometric Brownian motion. Our 

analysis provides information about the asymptotic behavior of the delayed geometric 

Brownian motion (2.4) which is, to the best of our knowledge, new. We just modify the proof 

of Lemma 3.4 with the obvious simplifications due to the fact that A(t) ≡ 1. This leads to a 

slight improvement in the flocking condition. Lemma 3.5. Let the parameters λ > 0, σ ∈ R, 

and τ ≥ 0 satisfy 

 

Then the solutions of the delayed geometric Brownian motion equation (2.4) satisfy 

 

Let us note that the above result is suboptimal for the deterministic case. Indeed, setting σ := 

0, equation (3.20) reduces to λτ < √2/2. However, it is known [30] that solutions of the 

delayed ODE ˙w = −λw asymptotically converge to zero if λτ < π/2. On the other hand, if 

there is no delay, i.e., τ = 0, the condition (3.20) reduces to σ2 < 2λ, which is the sharp 

condition for asymptotic vanishing of mean-squared fluctuations of geometric Brownian 

motion. 

4. Numerical experiments. We provide results of numerical experiments for the models 

considered in this paper with focus on their asymptotic behavior. First, we illustrate that one 

has to be cautious when interpreting the numerical results as indications about the “true” 

asymptotic behavior of the solution, because implementations of Monte Carlo algorithms for 

geometric Brownian motion lead to systematic underestimation of the moments of the true 

solution; see section 4.1. Keeping this systematic defect in mind, we will resort to weak 

methods for simulation of our SDEs and study their numerical asymptotic behavior. In 

section 4.2, we resort to the delayed geometric Brownian motion (2.4), which can be seen as 

a toy model of (1.1)–(1.2), and find combinations of parameter values that guarantee 

numerical asymptotic decay of the solution. In section 4.3, we then perform numerical 

simulations of the velocity alignment system (2.2) with fixed communication rates, and, 

finally, in section 4.4, we focus on the full system (1.1)–(1.2). 

4.1. Analysis of the Monte Carlo method for geometric Brownian motion. In this section 

we estimate the systematic error produced by numerical implementations of the Monte 

Carlo algorithm for geometric Brownian motion without delay. We show that computer 

simulations underestimate the mean-squared fluctuations of the process due to the fact that 

the numerical implementation does not capture large deviations (extreme outliers), and the 

error grows exponentially in time. Let us consider the one-dimensional Brownian motion 

with drift, 
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4.2.  

We assume that our numerical scheme produces approximations ¯z of the process z that 

exclude the extreme outliers; i.e., Prob(|z¯(t)| > α(t)) = 0 for some α = α(t). In particular, we 

consider a properly scaled cut-off of the density u(t, x) such that the probability of the 

extreme outliers Prob(|z(t)| > α(t)) remains constant in time. This leads to α(t) = η √ 4 λ t for 

some η > 0, since 

 

 

 

Fig. 1. (a) Logarithm of the simulated mean-squared fluctuations log(E[¯v2(t)]) (solid line) 

and the analytical result log(E[v2(t)]) = 4 λ t (dashed line). (b) Logarithm of the ratio of 

simulated and analytically calculated mean-squared fluctuations E[¯v2(t)]/E[v2(t)] (solid 

line) and the theoretically calculated curve (dashed line) given by the right-hand side of 

(4.4). The Monte Carlo simulation for z(t) was performed with 106 paths of the process 

(4.1) with z(0) = 0, λ = 0.5, and σ = 1 on the time interval [0, 30] divided into 103 

equidistant sampling points. 
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 where χ[−α(t),α(t)] is the characteristic function of interval [−α(t), α(t)] and erf(η) = 1 − 

erfc(η) is the error function. Let us denote by ¯z(t) the process with the density u¯η(t, x) for a 

fixed η > 0, and ¯v(t) := exp(¯z(t)). A simple calculation then reveals that 

 

This ratio is equal to one for t = 0. Using the mean value theorem, we obtain the asymptotic 

behavior of the ratio for large times, 

 

Consequently, any implementation of the Monte Carlo method excluding large deviations 

will underestimate the true value of E[v2(t)] by an exponentially growing factor in time. Let 

us note that this is also true for any moment of v and with general parameters λ and σ. We 

illustrate this fact using a numerical simulation. We perform a Monte Carlo simulation in 

Matlab with 106 paths of the process (4.1) on the time interval [0, T ] with T = 30 and 103 

equidistant sampling points. We impose the initial condition z(0) = 0 and the parameter 

values λ = 0.5 and σ = 1. Consequently, z(t) is the Wiener process Bt , and for its numerical 

approximation ¯z we use the built-in Matlab procedure normrnd that generates normally 

distributed random numbers. We calculate ¯v(t) := exp(¯z(t)) and evaluate the mean-squared 

fluctuations E[¯v2(t)]. We plot its logarithm as the solid curve in Figure 1(a), compared to the 

analytical curve log(E[v2(t)]) = 4 λ t (dashed line). We observe the exponential-in-time 

divergence of the two curves. This is well described by our formula (4.4), as illustrated 

in Figure 1(b). For the calculation of the cut-off parameter η we use the maximal value 

attained by the actual numerical realization of the stochastic process; i.e., we set η := 

maxt∈(0,T] |z¯(t)| √4 λ t . We then plot the logarithm of the ratio E[¯v2(t)]/E[v2(t)] and the 

theoretically calculated curve given by the right-hand side of (4.4). We observe a good match 

between the two curves.  

This systematic discrepancy between the analytical formulas and Monte Carlo simulations 

originates in the heavy tailed distribution of the geometric Brownian motion and is a well-

studied topic; see, e.g., the survey [19]. Importance sampling and rare-event simulation 

techniques would be the methods of choice to overcome this problem; however, their 

implementation is beyond the scope of our paper. 

4.3. Numerical study of delayed geometric Brownian motion. Using λ = 1, the delayed SDE 

(2.4) can be equivalently written as 

 

where σ ≥ 0 and τ ≥ 0 are nonnegative parameters. We perform a systematic numerical study 

of the delayed SDE (4.5) to characterize the asymptotic behavior of its solutions in 
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dependence on the values of the parameters σ and τ. In particular, we divide the domain [0, 

2] × [0, 2] for (σ, τ) into 100 × 100 equidistant (σ, τ)-pairs. For each pair of the parameter 

values we perform a Monte Carlo simulation for (4.5) with Q = 100 paths over the time 

interval [0, T ] with T = 30 and timestep Δt = 10−3. We impose the constant deterministic 

initial condition w(t) ≡ 1 for t ∈ (−τ, 0]. For discretization of (4.5) we use the Euler–

Maruyama method; i.e., the discrete scheme is 

 

subject to the initial condition wt ≡ 1 for t ≤ 0. Here K = T /Δt denotes the total number of 

timesteps, tk = kΔt, and N0,1 a normally distributed random variable with zero mean and 

unit variance. Note that the values of τ are chosen to be integer multiples of Δt, so that tk − τ 

= tl for some l ∈ Z. For each (σ, τ)-pair and each path q of the Monte Carlo simulation we 

calculate the “indicator,” 

 

where wq t is the qth path in the Monte Carlo simulation of (4.6). The shading in Figure 2 

encodes the logarithm of Iσ,τ . To define a region of “numerical convergence,” we choose a 

threshold Θ such that I0,τc = Θ for the delay τc = π 2 that is critical for the problem without 

noise (σ = 0). In our case this led to Θ~-10−2. The region of “numerical convergence” is 

marked dark blue in Figure 2. We observe the decrease of the critical value of the delay with 

increasing level of noise. For comparison, the critical values of τ given by (3.20) as a 

function of σ are indicated by the solid line.  

4.4. Numerical study of system (2.2) with fixed communication matrix. We present 

results of numerical simulations of system (2.2) in the one-dimensional setting d = 1, where 

we fix the communication rates to ψij ≡ 1 for all i, j = 1, 2,...,N; i.e., every agent 

communicates with all others at the same rate. Consequently, the communication matrix A 

has the off-diagonal entries Aij = −1, i = j, and Aii = N −1. It has only two eigenvalues, 0 

and N. Consequently, its Fiedler number is μ2 = N, 

 

Fig. 2. Results of Monte Carlo simulations of the delayed SDE (4.5) with Q = 100 paths for 

(σ, τ) ∈ [0, 2] × [0, 2]. The shading encodes log(Iσ,τ ). The region of “numerical 
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convergence” is dark blue. The solid line indicates the critical values of τ given by formula 

(3.20) with λ = 1 as a function of σ.  

and we can choose := N in (3.2). In this setting, we can directly compare our analytical 

result, Theorem 3.1, with numerical simulations. We will be considering even numbers of 

agents N = 2K, particularly, N ∈ {2, 20}, and we prescribe the initial datum 

 

for t ∈ (−τ, 0]. Although the asymptotic behavior of the solutions in general depends on the 

particular choice of the initial datum, a systematic study of this dependence is beyond the 

scope of this paper. Therefore we consider only the “generic” choice of initial conditions 

(4.7).  

We perform Monte Carlo simulations of the system (2.2) with N ∈ {2, 20}, σi = σ for all i = 

1, 2,...,N, and λ = 1 (other values of λ can be achieved by rescaling of σ and time). We 

divide the domain [0, 2]×[0, 2] for (σ, τ) into 50×50 equidistant (σ, τ)- pairs. For each pair 

of the parameter values we perform a Monte Carlo simulation with Q = 100 paths over the 

time interval [0, T ] with T = 30. We use the Euler– Maruyama method for discretization of 

(2.2) with timestep Δt = 10−3. To classify the asymptotic behavior of the solution, we again 

define the “indicator” 

 

where vq tk is the qth path in the Monte Carlo simulation of (1.1)–(1.2) at time tk = kΔt. We 

say that numerical flocking takes place when Iσ,τ < 10−2. The shading in Figure 3 encodes 

the decadic logarithm of the indicator, and the dark blue region indicates numerical flocking. 

We observe that the region of numerical flocking is only weakly influenced by the number 

of agents N. This is in agreement with the fact that the flocking condition (3.6) in Theorem 

3.1 does not depend on N. The increased smoothness of the color transition when N = 20 is 

a consequence of the law of large 
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Fig. 3. Decadic logarithm of the indicator Iσ,τ , given by (4.8), for Monte Carlo simulations 

of the system (2.2) with Q = 100 paths on the time interval [0, 30] subject to the initial 

condition (4.7), with λ = 1, (σ, τ) ∈ [0, 2] × [0, 2]. The dark blue regions (color online) 

indicate “numerical flocking.” The solid line indicates the critical value τc given by (3.6) for 

λ = 1 as a function of σ. The number of individuals is (a) N = 2 and (b) N = 20.  

numbers. For comparison, the critical value τc given by (3.6) for λ = 1 as a function of σ is 

indicated by the solid line in both panels. The comparison with the numerical results 

suggests that the condition (3.6) is far from optimal. 

4.5. Numerical study of the delayed Cucker–Smale system with multiplicative noise. 

Finally, we present results of numerical simulations of system (1.1)–(1.2) with 

communication rates ψ(|xi − xj |) and ψ given by (1.3). As in section 4.3, our goal is to 

characterize the asymptotic behavior of the solutions in dependence on the parameter 

values; however, we are facing additional difficulties here. In particular, the asymptotic 

behavior of the solution may depend nontrivially on the initial condition, as we show in 

Figure 4. Since a systematic study taking this effect into account is beyond the scope of this 

paper, we will impose the same type of initial condition for all our simulations. In particular, 

we prescribe constant zero value for the x-variables, 

 

For the v-variables we impose again the initial datum (4.7).  

We perform Monte Carlo simulations of the system (1.1)–(1.2), (1.3) with N ∈ {2, 20} and 

β = 0.1 (strong coupling) or β = 1 (weak coupling). As in section 4.3, we fix λ = 1 and divide 

the domain [0, 2] × [0, 2] for (σ, τ) into 50 × 50 equidistant (σ, τ)- pairs. For each pair of the 

parameter values we perform a Monte Carlo simulation with Q = 100 paths over the time 

interval [0, T ] with T = 30. We use the Euler– Maruyama method for discretization of (1.1)–

(1.2) with timestep Δt = 10−3. To classify the asymptotic behavior of the solution, we again 

use the indicator (4.8) and say that numerical flocking takes place when Iσ,τ < 10−2. The 

background color in Figure 5 encodes the decadic logarithm of the indicator, and the dark 

blue region indicates numerical flocking. 

 In panel (a) we indicate by an arrow the point (σ, τ) = (0, 1.75) that corresponds to the 

parameter setting in Figure 4; however, note that the initial conditions for xi in Figure 4 

differ from (4.9). We see that the indicated point lies close to the 
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Fig. 4. Numerical simulations of the system (1.1)–(1.2), (1.3) with parameter values N = 2, λ 

= 1, β = 0.1, σ = 0, and τ = 1.75. Both simulations are performed on the time interval [0, 

120] with discrete timestep Δt = 10−3. The initial condition for v is v1(t) ≡ 1, v2(t) ≡ −1 for 

t ∈ (−τ, 0] in both cases. The initial condition for x is (a) x1(t) ≡ −1, x2(t) ≡ 1; (b) x1(t) ≡ 1, 

x2(t) ≡ −1. The plots show the velocities of the two agents (red and blue, color online) as 

functions of time. 

boundary of the dark blue region, i.e., in the “transition zone” between numerical flocking 

and nonflocking. We hypothesize that this is why we were able to observe the two 

qualitatively different kinds of asymptotic behavior in Figure 4 even if the initial datum for 

the v-variables is the same in both cases. Again, a systematic study of this hypothesis is 

beyond the scope of this paper.  

In Figure 5 we observe that the region of numerical flocking is only weakly influenced by 

the number of agents N. This is in agreement with the fact that the flocking condition (3.6) 

in Theorem 3.1 does not depend on N. The increased smoothness of the color transition 

when N = 20 is a consequence of the law of large numbers. On the other hand, we can 

distinguish two distinct types of patterns, one similar to Figure 2 for the strong coupling 

case β = 0.1 (Figures 5(a) and 5(b)), and a semicircular pattern for the weak coupling case β 

= 1 (Figures 5(c) and 5(d)). In particular, the result for the weak coupling case is somewhat 

surprising—it suggests that for low levels of noise (σ 0.6), introduction of intermediate 

delays (0.3 τ 1.8) may facilitate flocking. This is further supported by Figure 6 where we 

plot sample solutions of (1.1)–(1.2), (1.3) for N = 2, β = 1, σ = 0 (Figure 6(a)), σ = 0.5 

(Figure 6(b)) and three different values of the delay τ ∈ {0, 1, 2}. We observe that while for 

τ = 0 and τ = 2 the agents do not show the tendency to converge to a common velocity 

during the indicated time interval, they exhibit numerical flocking for the intermediate value 

τ = 1. We will call this observation time-delay–induced flocking. 

Let us note that the results presented in Figure 6 do not contradict our analytical results. In 

particular, condition (3.6) gives τ < √2/4 . = 0.35 if σ = 0 and τ < (−1/2 + -11/8)/4 . = 0.17 if 

σ = 0.5, so it is only satisfied for the simulations in the panels corresponding to τ = 0 in 

Figure 6. Therefore, the statement of Lemma 3.4 applies. The (expectation of) the Lyapunov 

function (3.13) decreases in time for these two simulations. 

 To gain a further understanding of the interesting phenomenon of time-delay– induced 

flocking, we run systematic simulations of the system (1.1)–(1.2), (1.3) with 

 

Fig. 5. Decadic logarithm of the indicator Iσ,τ , given by (4.8), for Monte Carlo simulations 

of the system (1.1)–(1.2), (1.3) with Q = 100 paths on the time interval [0, 30] subject to the 

initial conditions (4.7) and (4.9), with λ = 1 and (σ, τ) ∈ [0, 2] ×[0, 2]. The dark blue regions 

(color online) indicate numerical flocking. The arrow in (a) indicates the point (σ, τ) = (0, 
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1.75) that corresponds to the parameter setting in Figure 4. We use (a) β = 0.1, N = 2; (b) β = 

0.1, N = 20; (c) β = 1, N = 2; and (d) β = 1, N = 20. 

different values of β ∈ [0.5, 2.5], τ ∈ [0, 2], and σ ∈ {0, 0.5}. We calculate the indicator 

Iβ,τ as in (4.8) with Q = 1 for σ = 0 (there is no need to run more than one path for the case 

without noise) and Q = 100 Monte Carlo paths for σ = 0.5. The decadic logarithm of Iβ,τ is 

plotted in Figure 7, and we again use the threshold Iβ,τ < 10−2 to define numerical flocking 

(dark blue regions in Figure 7). We observe that there exists (for β sufficiently large) a 

region of intermediate values of τ where numerical flocking takes place, while there is no 

flocking for smaller or larger τ values. Moreover, we see that noise has a disruptive 

influence on flocking (the dark blue region is smaller in Figure 7(b) compared to Figure 

7(a)).  

5. Discussion. We have studied a generalization of the Cucker–Smale model accounting for 

measurement errors, through introduction of multiplicative white noise, and for delays in 

information processing. This has led to a system of stochastic delayed differential equations, 

(1.1)–(1.2). In section 3, we have considered the communication rates between agents as 

given stochastic processes and derived a sufficient condition for flocking, which we define as 

asymptotic convergence of the agents’ velocities towards a common value. The condition is 

given in terms of the critical delay that guarantees 

 

Fig. 6. Agent velocities v1(t), v2(t) in sample solutions of the system (1.1)–(1.2), (1.3) with N 

= 2, λ = 1, β = 1 (weak coupling), on the time interval [0, 30] subject to the initial conditions 

(4.7) and (4.9). We use (a) σ = 0 and (b) σ = 0.5. 
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flocking as a function of the noise level. Our analysis is based on the construction of a 

suitable Lyapunov function for the system and a study of its decay. As a by-product of the 

analysis, we obtained a sufficient condition for asymptotic convergence of delayed geometric 

Brownian motion. 

 The second part of the paper was devoted to systematic numerical simulations. First, we 

performed Monte Carlo simulations of delayed geometric Brownian motion and evaluated its 

asymptotic behavior based on a suitable “numerical indicator.” This led to the conclusion that 

the analytically derived sufficient condition for asymptotic convergence is qualitatively 

right—the convergence deteriorates with increasing noise level and delay. However, 

quantitatively this condition is far from optimal. Next, we simulated the Cucker–Smale-type 

system with fixed communication rates and again compared the outcome with the analytical 

result. As before, the comparison showed 

 

Fig. 7. Decadic logarithm of the indicator Iβ,τ for simulations of the system (1.1)–(1.2), (1.3) 

on the time interval [0, 30] with λ = 1, N = 2, (β, τ) ∈ [0.5, 2.5] × [0, 2]. We use (a) σ = 0, Q 

= 1 and (b) σ = 0.5, Q = 100. The dark blue regions (color online) indicate numerical 

flocking. 

that, while qualitatively correct, the analytical formula produces too restrictive critical delays. 

Finally, we simulated the full Cucker–Smale system with delays and multiplicative noise. We 

used two regimes for the dependence of the communication rates on the agents’ distances: the 

strong coupling regime, which leads to unconditional flocking in the “classical” Cucker–

Smale model, and the weak coupling regime, where flocking may or may not take place. In 

the strong coupling regime the numerical picture was similar to the previous simulation with 

fixed communication rates. On the other hand, in the weak coupling regime we observed a 

somewhat surprising behavior of the system—namely, that the introduction of an 

intermediate time delay may facilitate flocking. We call this phenomenon “time-delay–

induced flocking.” 

Our paper leaves several open questions. First of all, our analytical flocking condition is too 

restrictive compared to numerical results, so efforts should be made to improve it. Moreover, 

the analysis applied to the case when the communication rates are given and satisfying a 

certain structural assumption. This is in fact against the spirit of the original Cucker–Smale 

model where the communication rates depend on the mutual distances between agents. A 

possible extension of our analysis to this case remains an open problem. The main difficulty 
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is due to the fact that it is not clear how to apply the classical bootstrapping argument that 

bounds the velocity fluctuations in terms of fluctuations in positions and vice versa. For the 

numerical part, it would be desirable to apply some multilevel Monte Carlo or importance 

sampling technique to obtain more accurate results. Moreover, the influence of the initial 

condition on the asymptotic behavior should be studied. Finally, the interesting phenomenon 

of delayinduced flocking deserves a detailed study, from both the analytical and numerical 

points of view. 
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