ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 14, Issue 05 2025

"DEVELOPMENT OF RTS BY ADDING WATERMELON, BEETROOT AND GINGER"

Pawar P. P.¹, Ingale V. M²

Department of Food Technology, D.Y.Patil Agricultural and Technical University, Talsande, Dist. Kolhapur, Maharashtra, India

Abstract:

The present study was undertaken to develop a Ready-to-serve (RTS) functional beverage by blending watermelon (Citrullus lanatus), beetroot (Beta vulgaris), and ginger (*Zingiber officinale*). Physico chemical analysis of raw materials revealed that watermelon was rich in moisture, lycopene, and vitamins; beetroot provided carbohydrates, betalains, and essential minerals; while ginger contributed bioactive compounds such as gingerols with strong antioxidant potential. Based on these characteristics, six RTS formulations (To–T5) were prepared in different combinations. Sensory evaluation carried out by a semi-trained panel indicated that the blend containing 60% watermelon, 20% beetroot, and 20% ginger (T4) was most preferred in terms of flavor, color, mouthfeel, and overall acceptability.

Shelf life studies demonstrated that the developed beverage maintained acceptable pH, acidity, total soluble solids, and microbial quality for up to 28 days under refrigerated storage. The study concludes that RTS prepared from watermelon, beetroot, and ginger can serve as a nutritious, palatable, and shelf-stable functional beverage with great potential for commercialization.

Keywords: Beetroot (Beta vulgaris), Watermelon (Citrullus lanatus), Ginger (Zingiber officinale), RTS.

1. Introduction:

In recent years, Ready-to-Serve (RTS) beverages have emerged as one of the fastestgrowing segments of the food and beverage industry. Their popularity is largely due to convenience, refreshing taste, and the ability to deliver nutrition in an easily consumable form. Unlike conventional drinks, functional RTS beverages are formulated to provide not only hydration but also added health benefits, as they are enriched with vitamins, minerals, and bioactive compounds (Sharma et al., 2021). Growing consumer awareness of diet-related health issues and interest in natural foods has further driven demand for functional beverages (Clifford et al., 2021). Among fruits, watermelon (Citrullus lanatus) is especially valued for its high water content (approximately 92%), natural sweetness, and abundance of nutrients. It contains lycopene, vitamin C, β-carotene, potassium, and magnesium, all of which contribute to antioxidant defense and cardiovascular support (Yimer et al., 2020; Rico et al., 2021). Beetroot (Beta vulgaris L.) is recognized as a rich source of dietary nitrates, betalains, phenolic compounds, and essential minerals. These constituents have been shown to lower blood pressure, enhance blood circulation, improve stamina, and reduce oxidative stress (Clifford et al., 2021; Georgiev et al., 2020). Ginger (Zingiber officinale), on the other hand, has long been used as both a spice and a medicinal root. Its major bioactive molecules, including gingerols and shogaols, exhibit strong antioxidant, anti-inflammatory, antimicrobial, and digestive

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 14, Issue 05 2025

properties (Shagol et al., 2021; Semwal et al., 2020). The blending of fruits and medicinal plants in RTS formulations represents a promising strategy for creating beverages with balanced sensory appeal, nutritional value, and functional properties (Bhardwaj et al., 2022). Developing an RTS beverage using watermelon, beetroot, and ginger can therefore result in a product that is not only palatable and refreshing but also nutritionally enhanced and beneficial to health.

2. Material and Method

2.1 Raw Material: Freshly harvested watermelon (Citrullus lanatus), red beetroot (Beta vulgaris L.), and ginger (Zingiber officinale) were collected from the local fruit and vegetable market in Thane, Maharashtra. Only healthy and uniform raw materials were selected, while overripe, diseased, and damaged samples were discarded. The selected produce was washed thoroughly under running potable water to remove soil, dust, and surface impurities.

Food-grade ingredients, namely granulated sugar (10%), citric acid (0.3%), common salt (2%), and sodium benzoate (0.07%), were incorporated in all formulations. The preservative concentration was maintained within FSSAI permissible limits (<120 ppm) Distilled water was used wherever required.

2.2 Formulation of RTS juice

RTS juice was prepared by blending three ingredients—watermelon, beetroot, and ginger—in varying proportions to evaluate their combined effect on nutritional, sensory, and microbial characteristics. Six different formulations were developed and coded as T₀ to T₅. T₀ (Control): 100% watermelon juice without the addition of beetroot or ginger. This served as the baseline for comparison.

T₁ to T₅: In each subsequent treatment, watermelon juice was reduced by 10%, while beetroot and ginger were added in equal proportions (5% each).

Tuble I I of managion of Itis Beverage			
Test	Watermelo	Beetroo	Ginge
	n	t	r
T_0	100%	-	-
T_1	90%	5%	5%
T_2	80%	10%	10%
T ₃	70%	15%	15%
T ₄	60%	20%	20%
T ₅	50%	25%	25%

Table 1 Formulation of RTS Beverage

2.3. Physicochemical Properties of RTS Formulations

The physicochemical properties of the prepared RTS beverages were analyzed following standard analytical protocols. The pH of each formulation was measured using a calibrated digital pH meter to determine the acidity and overall stability of the beverage (AOAC, 2019). The total soluble solids (TSS) were recorded with a handheld digital refractometer and expressed in °Brix, representing the concentration of soluble sugars and solids (Ranganna, 2017). Titratable acidity was determined by titration using standardized 0.1 N NaOH with phenolphthalein as an indicator, and results were expressed as citric acid percentage (AOAC,

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 14, Issue 05 2025

2019). Protein content was estimated using the Lowry method, which measures color intensity formed by the reaction between protein and Folin–Ciocalteu reagent (Lowry et al., 1951). Carbohydrate content was analyzed by the phenol–sulphuric acid method, based on the development of a colored complex measured spectrophotometrically (Dubois et al., 1956). Ash content was determined by incinerating a known quantity of sample in a muffle furnace at 550°C until a constant weight was achieved, representing the mineral residue of the beverage (Ranganna, 2017). These physicochemical evaluations provided essential information on the nutritional quality, composition, and storage stability of the developed RTS formulations.

2.4. Sensory analysis

Sensory evaluation is a critical aspect in assessing the consumer acceptability and organoleptic quality of fruit and vegetable-based beverages. In this study, a composite RTS (Ready-to-Serve) beverage formulated using beetroot, watermelon, and ginger juice was subjected to systematic sensory analysis. The evaluation was performed by a Jalaram health care staff, friends and unknown consumers. The objective of the sensory evaluation was to determine the overall acceptability, as well as individual sensory attributes such as appearance, color, aroma, taste, mouth feel, and aftertaste, to support formulation optimization and market readiness.

2.5 FLOW CHART:

Procurement & Sort	ting ↓
Washing	T.
Peeling & Cutting	1
Juice Extraction	1
Sugar Syrup Prepara	ation ↓
Blending & Addition	on of Preservative
Pasteurizaion	1
Bottling & Sealing	1
Labelling & Coding	; П

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 14, Issue 05 2025

Packaging

Cold Storage

3. Result and Discussion

3.1. Physicochemical Properties of RTS

The physicochemical characteristics of the six RTS formulations (To-Ts) are presented in Table. The incorporation of beetroot and ginger significantly improved the nutritional and functional profile of the beverage. The Total Soluble Solids (TSS) increased from 8.50 °Brix (To) to 10.77 °Brix (T4), attributed to the natural sugars and solids present in the added ingredients. Carbohydrate content increased from 8.50 g/100 ml (To) to 11.01 g/100 ml (T4), while protein content rose from 0.02 g/100 ml (To) to 0.09 g/100 ml (T4), indicating an overall enhancement in nutritional composition. The pH decreased gradually from 4.25 (To) to 3.80 (T4), while titratable acidity increased from 0.10% to 0.25%, indicating better product stability during storage. Similarly, ash content increased from 0.15% (To) to 0.28% (T4), reflecting a higher mineral content as the proportion of beetroot and ginger increased.

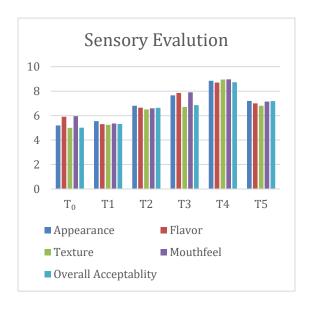
Table 2 Physico-chemical properties of RTS

Treatme	TSS	pН	Titratab
nt			le acidity
To	8.50	4.25	0.10
T_1	9.02	4.10	0.13
T_2	9.65	3.95	0.17
T ₃	10.10	3.85	0.21
T ₄	10.77	3.80	0.25
T ₅	10.25	3.90	0.23

Treatm ent	Prote in	Carbohydr ates	Ash conten t
To	0.02	8.50	0.15
T_1	0.04	9.00	0.18
T_2	0.06	9.60	0.21
T_3	0.08	10.30	0.24
T ₄	0.09	11.01	0.28
T ₅	0.07	10.50	0.26

3.2. Sensory Evaluation

The sensory evaluation results Table indicated a notable improvement in consumer acceptance with increasing beetroot and ginger content. Formulation T_4 (60% watermelon, 20% beetroot, and 20% ginger) received the highest overall scores for appearance (8.85), flavor (8.70), texture (8.95), mouthfeel (8.97), and overall acceptability (8.73) on a 9-point hedonic scale. Panelists particularly appreciated the deep red color imparted by beetroot, the refreshing


ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 14, Issue 05 2025

sweetness from watermelon, and the mild spiciness from ginger. The control sample (T₀) received the lowest scores due to its lack of flavor complexity and dull appearance.

Treatme	Appearan	Flavor	Textur
nt	ce		e
To	5.20	5.90	5.00
T_1	5.55	5.30	5.25
T_2	6.80	6.65	6.50
T ₃	7.65	7.85	6.70
T ₄	8.85	8.70	8.95
T ₅	7.20	7.00	6.80

Treatment	Mouthfeel	Overall Acceptablit y
То	5.95	5.01
T_1	5.35	5.31
T_2	6.60	6.64
T_3	7.90	6.86
T ₄	8.97	8.73
T ₅	7.15	7.18

3.3. Shelf Life Study

Shelf life evaluation was conducted over 28 days under refrigerated conditions (4 \pm 2°C) to determine product stability and safety. The Total Plate Count (TPC) showed a gradual increase over time, ranging from 2.10×10^4 cfu/ml (day 0) to 4.10×10^4 cfu/ml (day 28) in formulation T₄.

Despite this increase, microbial counts remained within the permissible limits (≤10⁵ cfu/ml) as per FSSAI standards. Yeast and mould counts, as well as E. coli, were absent throughout the 28-day period, indicating effective pasteurization and hygienic handling during production. No visible signs of separation, gas formation, or discoloration were observed during storage,

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 14, Issue 05 2025

confirming that the beverage remained stable and safe for consumption for up to 28 days under refrigeration.

Treatme	0 Day	14 Day	28 Day
nt			
То	1.12×10	1.58×10	2.67×10
T_1	1.30×10	1.82×10	2.99×10
T ₂	1.65×10	2.25×10	3.42×10
T ₃	1.85×10	2.60×10	3.85×10
T ₄	2.10×10	2.80×10	4.10×10
T ₅	2.35×10	3.10×10	4.50×10

4. Conclusion

The present study successfully developed and evaluated a functional Ready-to-Serve (RTS) beverage using watermelon, beetroot, and ginger in varying proportions. The combination of these three ingredients provided a balanced profile of hydration, nutrition, and functional health benefits. The physicochemical analysis revealed that increasing beetroot and ginger content significantly enhanced total soluble solids, carbohydrate, protein, and ash levels while slightly lowering pH, thereby improving product stability.

Sensory evaluation demonstrated that the T₄ formulation (60% watermelon, 20% beetroot, and 20% ginger) achieved the highest scores for appearance, flavor, texture, mouthfeel, and overall acceptability, indicating its superior consumer appeal. The bright red color, refreshing sweetness, and mild spiciness contributed to its preference.

Shelf life assessment showed that the beverage remained microbiologically safe and stable for up to 28 days under refrigerated conditions, with total plate counts within permissible FSSAI limits and absence of yeast, mould, and E. coli.

Overall, the developed RTS beverage proved to be a nutritionally enriched, sensorially acceptable, and microbiologically safe product with good market potential. The incorporation of watermelon, beetroot, and ginger in optimal proportions offers a natural, refreshing, and health-promoting functional drink suitable for commercial production.

5. Reference

- 1. A.Panghal, K. Virkar, V. Kumar, S.B. Dhull, Y. Gat, N. Chhikara Development of probiotic beetroot drink.
- 2. Akinola, S. A., Akinmadeyemi, A. S., Ajatta, and M. A., Aworh O. C. (2018): Influence of chemical preservatives on quality attributes of orange juice. Croatian Journal of Food Science and Technology 10
- 3. Alim-un-Nisa A, Javed S, Firdous S, Saeed MK, Hina S, Ejaz N. Nutritional aspects and acceptability of watermelon juice syrup. Pak J Food Sci, 22, 32-35 (2012)
- 4. Ansaba, R., et al. (2025). Comparative analysis of bioactive compounds in watermelon genotypes with different flesh colors.

ISSN PRINT 2319 1775 Online 2320 7876

- 5. B. Bazaria, P. Kumar Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM)
- 6. Barański, R., Grzebelus, D., & Frese, L. (2001). Estimation of genetic diversity in a collection of the Garden Beet Group. Euphytica, 122, 19–29. https://doi.org/10.1023/A:1012631006600
- 7. Behrens, C. E., Jr., Ahmed, K., Ricart, K., Linder, B., Fernández, J., Bertrand, B., ... Fisher, G. (2020). Acute beetroot juice supplementation improves exercise tolerance and cycling efficiency in adults with obesity. Physiological Reports, 8(19), e14574.
- 8. Bello O, Bello T, Fashola O, Oluwadu B, Beuchat LR. Microbiological quality of some locally produced fruit juices in Ogun state Southwestern Nigeria. E3 J Microbiol Res. 2014;2(1):001–8.
- 9. Cambridge University Press. (n.d.). Nitrate supplementation improves performance in non-athletes. British Journal of Nutrition
- 10. Clifford, T., Howatson, G., West, D. J., & Stevenson, E. J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801–2822. https://doi.org/10.3390/nu7042801 Comprehensive Review. (2024). Nutritional components, phytochemical compositions, biological properties, and potential food applications of ginger (Zingiber officinale): A comprehensive review. Journal of Food Composition and Analysis, 128, 106057.
- 11. D. Mudgal, S. Singh, B.R. Singh Nutritional composition and value added products of beetroot: A review
- 12. Deshmukh GP, Priyanka Sindhav R, Jose N. Application of beetroot as natural coloring pigment and functional ingredient in dairy and food products. International Journal of Current Microbiology and Applied Sciences. 2018;7(12):2010-2016
- 13. Diezma-Iglesias, B., Ruiz-Altisent, M., Barreiro, P., 2004. Detection of internal quality in seedless watermelon by acoustic impulse response. Biosyst. Eng. 88, 221–230.
- 14. Digestive Health Review. (2025). Ginger's nutritional implication on gastrointestinal health. Clinical Nutrition Open Science.
- 15. EatingWell. (n.d.). Surprising health benefits of beets. EatingWell.
- **16.** Ed-Dra, A., Alhudhaibi, A., Abdallah, E. M., & Nalbone, L. (2025). Quality and safety of fresh sugarcane juice sold by street vendors: a growing public health concern. Frontiers in Sustainable Food Systems, 9, 1628211.
- 17. Edo, G. I., Igbuku, U. A., Makia, R. S., Isoje, E. F., Gaaz, T. S., Yousif, E., ... & Umar, H. (2025). Phytochemical profile, therapeutic potentials, nutritional composition, and food applications of ginger: a comprehensive review. Discover Food,5(1),132.FAOSTAT.2022.Availableonline:https://www.fao.org/faostat/en/#data/qcl (accessed on 2 February 2024).
- 18. Feizy, J., et al. (2022). Nutritional and phytochemical properties of watermelon rind flour. Food Research Journal, JCRFS, 1(1), 16–22.
- 19. Feizy, J., et al. (2024). Total phenolic content and antioxidant activities of watermelon peel extracts. Frontiers in Sustainable Food Systems, (n.d.), 2473.45 mg GAE/100 g.
- 20. Figueroa, A., Wong, A., Son, W. M., & Kalfon, R. (2021). Effects of watermelon supplementation on vascular function in postmenopausal women: A randomized, double-blind, placebo-controlled trial. Nutrients, 13(8), 2648.
- 21. Food and Agricultural Organization of the United Nations, 2015. Global Production of Vegetables in 2013, by Type (in Million Metric Tons).
- 22. Franke AA, Cooney RV, Henning SM, Custer LJ. Bioavailability and antioxidant effects of orange juice components in humans. J Agri Food Chem. 2005;53(13):5170–8.
- 23. Gaertner, V. L., & Goldman, I. L. (2005). Pigment distribution and total dissolved solids of selected cycles of table beet from a recurrent selection program for increased pigment.

ISSN PRINT 2319 1775 Online 2320 7876

- The Journal of the American Society for Horticultural Science, 130(3), 424–433. https://doi.org/10.21273/JASHS.130.3.424
- 24. Ganesh, K. S., Sridhar, A., & Vishali, S. (2022). Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review. Chemosphere, 287, 132221.
- 25. Global Biodiversity Information Facility (GBIF). Available online: https://www.gbif.org/species/2874515 (accessed on 10 August 2024)
- 26. Hamedi, S., & Honarvar, M. (2018). Beta vulgaris—A mini-review of traditional uses in Iran. Phyto-Chemistry and Pharmacology Current Drug Discovery Technologies, 16(1), 74–81. https://doi.org/10.2174/15701 63815666180308142912
- 27. Hashim, N., Janius, R.B., Abdul, R., Osman, A., Shitan, M., Zude, M., 2014. Changes of backscattering parameters during chilling injury in bananas. J. Eng. Sci. Technol. 9, 314–325.
- 28. Hoejskov, P. S. (2014, October). Importance of fruit and vegetables for public health and food safety. In Presentation at the Pacific Regional Workshop on Fruit and Vegetables for Health (pp. 20-23).
- 29. Jaskani MJ, Kwon SW, Kim DH. Comparative study on vegetative, reproductive and qualitative traits of seven diploid and tetraploid watermelon lines. Euphytica, 145, 259-268 (2005)
- 30. Jiang G, Wu Z, Ameer K, Li S, Ramachandraiah K. Particle size of ginseng (Panax ginseng Meyer) insoluble dietary fiber and its effect on physicochemical properties and antioxidant activities. Appl Biol Chem, 63, 1-10 (2020)
- 31. Jimma FI, Mohammed A, Adzaworlu EG, Nzeh J, Quansah L, Dufailu OA. Microbial quality and antimicrobial residue of local and industrial processed fruit juice sold in Tamale Ghana. Discov Food. 2022.
- 32. Johnson JT, Iwang EU, Hemen JT, Odey MO, Efiong EE, Eteng OE. Evaluation of antinutrient contents of watermelon Citrullus lanatus. Ann Biol Res, 3, 5145-5150 (2012)
- 33. Kodagali, J. A., & Balaji, S. (2012). Computer vision and image analysis based techniques for automatic characterization of fruits-a review. International Journal of Computer Applications, 50(6).
- 34. Kumar KM, Asish G, Sabu M, Balachandran I. Significance of gingers (Zingiberaceae) in Indian system of medicine—ayurveda: an overview. Anc Sci Life. 2013;32:253.
- 35. Liu, W., Zhao, S., Cheng, Z., Wan, X., Yan, Z., King, S.R., 2010. Lycopene and citrulline contents in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development. Acta Hortic. 871, 543–550.
- 36. M.E. Batali, A.R. Cotter, S.C. Frost, W.D. Ristenpart, J.-X. Guinard Titratable acidity, perceived sourness, and liking of acidity in drip brewed coffee ACS Food Science & Technology, 1 (4) (2021), pp. 559-569,
- 37. Mashhadi NS, Ghiasvand R, Askari G, et al. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. Int J Prev Med. 2013;4:S36-42.
- 38. Meta-analysis. (2024). Ginger intervention on body weight and body composition in adults: A GRADE-assessed systematic review and dose-response meta-analysis. Journal of Obesity & Metabolic Research.
- 39. Munro, D. B., & Small, E. (1997). Vegetables of Canada. National Research Council Press
- 40. N. Chhikara, K. Kushwaha, P. Sharma, Y. Gat, A. Panghal Bioactive compounds of beetroot and utilization in food processing industry: A critical review
- 41. Nottingham, S. (2004). Dictionary of cultivated varieties. In S. Nottingham (Ed.), Beetroot (chapter 5, pp. 156). E book. https://www.academia.edu/21542519/Beetroot

ISSN PRINT 2319 1775 Online 2320 7876

- 42. Okonmah LU, Agbogidi OM, Nwagu OK. Evaluation of four varieties of watermelon (Citrullus lanatus Thumb) in Asaba agro-ecological environment. Int J Adv Biol Res, 1, 126-130 (2011)
- 43. Onyema, J. O., Onyeike, E. N., & Amadi, B. A. (2024). Nutritional composition of proximate, mineral, vitamin, and amino acid profiles in turmeric and ginger. International Journal of Nutrition and Food Science, 3(4), 262–266.
- 44. Osborne D., Voogt P. New Work. Academic Press; 1978. Calculation of calorific value In: the analysis of Nutrients in Foods; pp. 239–240.
- 45. Patel, K.K., Kar, A., Jha, S.N., Khan, M.A., 2012. Machine vision system: a tool for quality inspection of food and agricultural products. J. Food Sci. Technol. 49, 123–141.
- 46. Paudel, D., Orent, T., & Penela, P. (2025). Pharmacological properties of ginger (Zingiber officinale): What do meta analyses say? A systematic review. Journal of Inflammation and Pharmacology.
- 47. Perera DN, Hewavitharana GG, Navaratne SB. Determination of physicochemical and functional properties of coconut oil by incorporating bioactive compounds in selected spices. J Lipids. 2020;2020:1–11.
- 48. Perkins-Veazie, P., Collins, J.K., Davis, A.R., Roberts, W., 2006. Carotenoid content of 50 watermelon cultivars. J. Agric. Food Chem. 54, 2593–2597.
- 49. Pharmacological Review. (2025). Pharmacological properties of ginger... [Systematic Review cover]. Journal of Inflammation and Nutraceuticals.
- 50. Pons L. Exploring important medicinal uses for from: http://www.ars.usda.gov/is/pr/2003/030221.htm. Accessed Mar. 8, 2006. watermelon rinds. Available
- 51. Prasad S, Tyagi AK. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract. 2015;2015:1–11.
- 52. Rady, A.M., Guyer, D.E., 2015. Rapid and/or nondestructive quality evaluation methods for potatoes: a review. Comput. Electron. Agric. 117, 31–48.
- 53. Rawson A, Patras A, Tiwari BK, Noci F, Koutchma T, Brunton N. Effect of thermal and non-thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Res Int. 2011;44(7):1875–87.
 - 54. Rehman MHU, Ahmad A, Amir RM, Ameer K, Ali SW, Siddique F, and Hayat I, Ahmad Z, Faiz F. Ameliorative effects of fenugreek (Trigonella foenum-graecum) seed on type 2 diabetes. Food Sci Technol, 41, 349-354 (2020)
- 55. Review. (2022). The effect of ginger supplementation on metabolic profiles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Complementary Therapies in Medicine, 65, 102802.
- 56. Rico, D. (2021). Nutrient distribution in watermelon parts and potential valorization of byproducts.
- 57. Ruiz-Altisent, M., Ruiz-Garcia, L., Moreda, G.P., Lu, R., Hernandez-Sanchez, N., Correa, E.C., Diezma, B., Nicolaï, B., García-Ramos, J., 2010. Sensors for product characterization and quality of specialty crops-a review. Comput. Electron. Agric. 74, 176–194.
- 58. Siddiqui, M. W., Patel, V. B., Ahmad, M. S. (2015): Effect of climate change on postharvest quality of fruits. Climate dynamics in horticultural science: Principles and applications, 1, 313-326.
- 59. Times of India. (2025, May 18). Raw vs boiled beetroot: Which form guarantees more nutrition? The Times of India.
- 60. Tsige K, Gaddisa T, Bacha K. Microbological safety of fruit juices served in cafes/restaurants, Jimma town, southwest Ethiopia. Eth J of Hlth Sci. 2008;18(3):98–100.
- 61. University of Exeter. (2023, January 23). Dietary nitrate—in beetroot juice—increases muscle force during exercise.

ISSN PRINT 2319 1775 Online 2320 7876

- 62. Verywell Health. (2023, September 21). The surprising benefits of beet supplements for your health. Verywell Health
- 63. Vincellete, A., Khalesi, S., & Irwin, C. (2020). Acute effects of watermelon juice supplementation on postprandial vascular function and blood glucose in healthy adults. Nutrients, 12(6), 1639
- 64. Walker, M., Phillips, C. A. (2008): The Effect of Preservatives o Alicyclobacillus acidoterretris and Propionibacterium cyclohexanicum in Fruit Juice. Journal of Food Control, 19 (10): 974-981.
- 65. Wehner TC, Shetty NV, Elmstrom GW. Breeding and seed production. In: Watermelons, Characteristics, Production and Marketing, Maynard DN (Editor), American Society for Horticultural Science (2001)
- 66. Wu, D., Sun, D.W., 2013. Colour measurements by computer vision for food quality control a review. Trends Food Sci. Technol. 29, 5–20.
- 67. Yahia EM, García-Solís P, Celis MEM. Contribution of fruits and vegetables to human nutrition and health. In: Postharvest physiology and biochemistry of fruits and vegetables. Cambridge: Woodhead Publishing; 2019.
- 68. Yimer, Z. S., & Tehulie, N. S. (2022). Nutritional composition of different varieties of watermelon (Citrullus lanatus) fruit at Gewane, Northeastern Ethiopia. Academia Journal of Agricultural Research, 10(1), 011–018.
- **69.** Zhou, Q., Peng, Y., Chen, F., & Dai, J. (2023). Ginger supplementation for the treatment of non-alcoholic fatty liver disease: A meta-analysis of randomized controlled trials. African Health Sciences, 23(1), 614–621.

