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Abstract 

 Over-pumping of groundwater for domestic, agricultural and industrial consumption 

will lower the water table and can accelerate the movement of pollutant-laden surface water 

into the groundwater. In unsaturated soil, the water content is less than the soil porosity, and 

the soil water pressure head (matric potential) is negative, being less than that of free water at 

the same location. The upper most region of the soil, the unsaturated zone, is the site of 

important process leading to pollutant attenuation. 

 In responding to the growing concern over deteriorating groundwater quality, 

groundwater flow models are rapidly coming to play a crucial role in the development of 

protection and rehabilitation strategies. These models provide forecasts of the future state of 

the groundwater aquifer systems. 

 The present study is concerned with the development of analytical models for transport 

of contaminants in unsaturated porous media with non-uniform flow  

Introduction 

The groundwater has been a major source of water supply throughout the ages. The 

groundwater is also an important source in the agriculture and industrial sector. In many parts of 

the world, groundwater resources are under increasing threat from growing demands, wasteful use 

and contamination. A good planning and management practices are needed to face this challenge. In 

order to understand the behaviour of contaminant transport through different types of media, several 

researchers are carrying out experimental investigations through laboratory and field studies. A 

porous medium is a material, which contains pores. Pores are filled with one or more different 

fluids, like air, water or oil. The porous medium is saturated if all the pores contain water and is 

unsaturated if some pores are filled with water and some with air. The saturation is defined as 

the fraction of the total volume of the fluid and pore volume. There exist many natural porous 

substances such as soil, rocks, wood, cork or bones. 

The water flow and contaminant transport equations in the unsaturated zone are 

described by Bear [2], Pinder and Gray [6], and Freeze and Cherry [7]. Gray and Hassanizadeh 

[8] proposed a new set of equations to describe the unsaturated flow processes obtained from 

averaging theory coupled with an interface thermodynamic analysis. However, this set of 

equations contains many more unknowns than that of classical equations. 

 For simulating most field problems, exact analytical solutions are probably out 

weighted by errors introduced by simplifying approximations of the complex field environment 

that are required to apply the analytical approach (De Smedt and Wirenga, [5], Foussereau                         

et al.,[9],Yates et al., [10]). Ebach and White [1] studied the longitudinal dispersion problem for 

an input concentration that varies periodically with time. Al-Niami and Rushton [3] studied the 

analysis of flow against dispersion in porous media. Hunt [4] applied the perturbation method 

to longitudinal and lateral dispersion in non-uniform seepage flow through heterogeneous 

aquifers. M Jalal Ahammad et al [11] studied dispersion and diffusion of solvent saturation 

with the help of a streamline-based Lagrangian methodology. Overall pressure drag on the 

diffusion and dispersion of solvent saturation was studied. Numerical results were in good 

agreement with the results obtained from asymptotic analysis.  

In this paper, we have studied the mathematical modelling of transport of pollutants in 

unsaturated soil media with non-uniform flow. The basic approach is to reduce the 

advection-dispersion equation into a conduction equation by using moving coordinates 

which eliminates the convective term. We have used Laplace transform method to reduce 

the non-linear partial differential equation to ordinary differential equation. By introducing 

Duhamel’s theorem, the general solution of ordinary differential equation is expressed in 

terms of error function.  

Mathematical Formulation 

The advection-dispersion equation of one-dimensional mathematical model for transport of 

pollutants through unsaturated porous media in non-uniform flow with initial and boundary 

conditions is of the form 

 2 1

2 d

nC C C
D w C

t z nz

  
   

 
                                         (1) 

where C is the constituent concentration in the soil solution, t is the time, D is the 

hydrodynamic dispersion coefficient, z is the depth, w  is the average pore-water velocity, K
d

 is 

the dissipaton coefficient. 
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Let us consider a semi-infinte soil (porous) medium in an uni-directional flow field in which the 

input tracer concentration is
0

t
C e


, where C0 is a reference concentration and   is a constant. 

Initially, saturated flow of concentration, C = 0, in the porous media. At t = 0, the concentration 

of the upper surface is instantaneously changed to 
0

t
C C e


  

Thus, the appropriate boundary conditions for the given model are  

 

 

 

,0 0 0

0, 0

, 0 0

C z z

t
C t C e to

C t t



  


  


   

                                                                                 (2) 

The problem then is to characterize the concentration as  ,f z t , where the input condition is 

assumed at the origin and a second type boundary condition or flux type boundary condition is 

assumed. Co  is the initial concentration. Using  

      
 2 1

, ,
2 4

d n twz w t
C z t z t Exp

D D n

  
    

  

                                           (3) 

equation (1) reduces to  
2

2
D

t z

  


                                                          (4) 

The initial and boundary conditions (2) transform to 

 
 

 

 

2 1
0, : 0

4

,0 0 : 0

, 0 : 0

n tw t dt C exp t to
D n

z z

t t


  
     
  


   


    



                                       (5)   

Equation (4) is solved for a time dependent influx of the fluid at z = 0  and is  obtained by 

Duhamel’s theorem stated as “ If  ,,, zyxFC   is the solution of semi-infinite conduction 

equation in which, the initial concentration is zero and the solute concentration at the surface is 

unity. The solution of the given problem at temperature  t  will be 

  ( , , , )
0

t
C F x y z t d

t
   


 


”. Consider the problem in which the initial concentration is 

zero. The boundary conditions are 

   

 

 

 

0, 0 0

,0 1 0

, 0 0

t t

z z

t t

   


   


      

The Laplace transform of equation (4) is given by 
2

2
L L D

t z

    
       

which reduces to  

2

2

p

Dz

 
 

        (6) 

Its solution is 
qz qz

Ae Be


    where  
p

q
D

  . 

As z      B = 0 and at z = 0,
p

A
1

 , thus the general solution  is of the form 
1 qz

e
p


  . The 

inverse of the given function from the table of Laplace transforms is 

22
1

2
2

z
erf e d

zDt
Dt






  
     

 
  with  

22

0

z
erf z e d







  .                             

Using Duhamel’s theorem, the solution of the problem with initial solute concentration is zero 

and the time dependent surface initial condition at z = 0 is 
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 
22

0
2 ( )

t
e d d

zt

D t


   




 
  
    

  
    

Since 
2

e


is a continuous function, the differential under the integral reduces to 

 

222

3 4 ( )
22 ( )2

z z
e d exp

zt D t
D tD t





 
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  
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The solution to the problem is  

2
( )

34 ( )2 0 2( )

tz z d
exp

D tD
t


 




 
   

   

                                     (7) 

Putting 
 2

z

D t






 then the equation (7) can be written as  

2 22

24
2

z
t e d

z D
Dt


 

 

  
   
 
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                                                            (8) 

Since,

2 (1 )
( )

0 4

n tw t dt C exp t
D n

 
  
   
 
 

 the particular solution of the problem is 

 z

 
2 2 2(1 )2 2 20,

2 24 0 0

n tC w t dz t exp t exp d exp d
D n

 
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  

         
               
     

       

(9) 

Where 

2 (1 )
and

42 2

d n tz w t z

D nDt D
  

  
    

 
. 

The integral of the first term of equation (9) gives 

2
2 2

2 20
exp d e

   


     
 
 

                                                                   (10) 

For convenience, the second integral term is expressed in terms of error function. 

Noting that  

2 22
2 2 2

2

  
    

 

   
            

   
, the second term of the integral of 

equation (9) is 

0 0 0

2 22 12 2 2 .
2 2

z zI exp d e exp d e exp d

  
  

     
 

                                         

    (11) 

With a , the first integral on  R H S of equation (11) can be written as 

 

2 2
2 2 1

1 20

zI e exp d e exp a da
z aa

     




                        
            

     

2
2ze exp a da

z a





       
  
 

                (12) 

Let 







 a

a


 , then the first integral term of the above equation becomes 

  

2
22 2

1
z zI e e d e exp a da

z z a




  

             
    

                             (13) 

Similarly, the second integral on R H S of equation (11) gives  
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2 2
2 2 exp

2
z zI e exp a da e a da

z za a

 

 

                   
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   

                                  (14) 

Again substituting a
a



  into the first integral term,  

  

2
22 2

2
z zI e e d e exp a da

z z a

 


 
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     (15) 

But     
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 
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 
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Substitution into equation (11) gives

 

  

2 21 2 2

2

z zI e e d e e d
Z Z

 
 

  

 
      

  
 

                                                 (16) 

Thus, equation (9) may be expressed as

  
 

2 (1 )2
0,

4

n tC w t
dLz t exp t

D n
L




  
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 
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                                             (17)
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Re-

writing equation (17) in terms of error function, we get 

 
2 (1 )

2 20,
2 4

n tC w t z zdz t exp t e erfc e erfc
D n

 
  

 
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           (18) 

Thus, substitution into equation (3) gives the solution as  

1 2 2

2 2
0

C wz z zexp t e erfc e erfc
C D

 
  

 
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                                           (19) 

Re-substituting for  and  gives 

1
.

2 2
0

C wz
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C D

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  

 
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 
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            
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       (20) 

When the boundaries are symmetrical the solution of the problem is given by the first integral 

term of the equation (20).  The second integral term of equation (20) is due to the asymmetric 

boundary condition  imposed in the general problem.  However, if a point at a large distance 

away from the source is considered, then it is possible to approximate the boundary condition by 

C(-∞, t) = C0, which leads to a symmetrical solution. 

1. Results and Discussion 

Equation (20) gives the value of the ratio 

0

C

C
for unsaturated non – uniform fluid flow at any 

distance z and time t. Fig. 1 and. Fig. 2 represents the concentration profiles verses time in the 

porous media for depth z for different velocity w = 0.0111 m/hr,  D = 11.24 cm2/yr,          Kd =1, n 
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= 0.5 and n = 1. Fig. 3 and. Fig. 4 represents the concentration profiles verses time in the porous 

media for depth z for different velocity w = 0.0111 m/hr,  D = 11.24 cm2/yr,         Kd =1, n = 0,  

0   and 1  . 
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From Fig. 1 and Fig.2, there is a decrease in 

0

C

C
 with depth as porosity n decreases due to the 

distributive coefficient Kd . From Fig. 3 and Fig.4 there is a decrease in 

0

C

C
 with depth as  

decreases and if time increases the concentration increases for different time. 

 

Conclusions 

The main limitations of the analytical methods are that the applicability is for relatively simple 

problems.  The geometry of the problem should be regular.  The properties of the soil in the 

region considered must be homogeneous in the sub region.  The analytical method in somewhat 

more flexible than the standard form of the other methods for one-dimensional transport model.  

Accordingly, the analytical solutions derived for the finite domain will thus be particularly 

useful for analyzing the one-dimensional transport in unsaturated porous medium with a large 

dispersion coefficient whereas the analytical solution for semi-infinite domain is recommended 

to be applied for a medium system with a small dispersion coefficient.  Moreover, the developed 

solution is especially useful for validating numerical model simulated solution because realistic 

problems generally have a finite domain. 
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