ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023

QUANTIFY CHANGES IN AGRICULTURE LAND USING SUPERVIESD CLASSIFICATION METHOD FOR REWARI DISTRICT, HARYANA

Arti Chouksey¹, Khusboo Puri², Tarun², Aman Ahlawat¹

¹Assistant Professor, Department of Civil Engineering, DeenBandhu Chhotu Ram University of Science and Technology

²M.Tech Student, Department of Civil Engineering DeenBandhu Chhotu Ram University of Science and Technology

Corresponding author – purikhusboo15@gmailcom

Abstract: Land is a paramount natural resource. The city's population increases, accompanied by changes in geographic dimensions. Nevertheless, it is impossible to impede the natural process of land transformation. This study examines the evolution of highways. A change detection model was executed in ERDAS. Envision assessing land usage and land cover, particularly agricultural land, from 2006 to 2021. Five forms of land use were identified, with built-up agricultural land as the most prevalent type. A notable transformation has been recorded during 16 years (2006-2021) in Deodhai hamlet, situated 10 km from Rewari, Haryana, enabled by ERDAS, subsequent to the completion of the NH-48 highway. In 2006, 61.78% of the land was allocated for agricultural use, declining to 48.67% by 2021. The principal reason driving this alteration in land use is road construction.

Keywords Agriculture Land, ERDAS, Google Earth Pro, QGIS land use land cover (LULC), NH-48

1. Introduction. The fundamental goal of roads is to facilitate the development of a city or region while also promoting growth in the production and service sectors. Road infrastructure attracts greater development. The recent construction of highways facilitates the advancement of the states. The development of a city or region, along with the expansion of its production and service sectors, is predominantly facilitated by road infrastructure. The correlation between road infrastructure development and alterations in land use surrounding it warrants thorough investigation. The construction of highways facilitates the advancement of states towards growth. Constructing roads is an endeavor that pertains to advancing the nation's development [1-5].

The development of roadways facilitates urban expansion. Facilitating relocation enables timely and efficient delivery of goods to individuals.

2.Literature Review:

Numerous researchers worked on land use cover classification for the quantification of various land use classes.

2.1 Data Sources for LULC

Remote sensing data for LULC classification can be obtained from diverse platforms, including satellites, airborne sensors, and UAVs (Wulder et al., 2008). By use of High-resolution sensors, such as SPOT, IKONOS, and QuickBird detailed mapping can be done (Lu & Weng, 2007).

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved. Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023
Sentinel-2 and WorldView series satellites have offered improved spatial and spectral resolution (Drusch et al., 2012). Synthetic Aperture Radar (SAR) systems, have further expanded possibility of LULC analysis by penetrating cloud cover and providing information (Lee & Pottier, 2009).

2.2 Classification Techniques for Landuse and Landcover analysis

- 1. Pixel-Based Methods(DN value based): Pixel-based classification methods, supervised and unsupervised approaches, are widely used for LULC mapping. (Lillesand et al., 2015). However, its less realible when there are wide range of classes and distributed DN values (Foody,
- 2. Object-Based Image Analysis (OBIA): it is an alternative of pixel-based methods, leveraging both spectral and spatial information. By segmenting imagery into meaningful objects, OBIA reduces the "salt-and-pepper" effect common in pixel-based classifications (Blaschke, 2010).
- 3. Machine Learning Approaches: Several Machine learning classifiers, such as decision trees, random forests (RF), support vector machines (SVM), and artificial neural networks (ANNs), have become increasingly dominant. (Pal, 2005). RF is used for discrete data, SVMs, on the other hand, excel in small sample sizes and non-linear separability (Mountrakis et al., 2011).
- 4. Deep Learning Techniques. CNNs extract hierarchical features directly from imagery, outperforming traditional approaches in complex environments (Zhu et al., 2017). Applications of deep learning have been demonstrated in urban growth modeling, forest cover monitoring, and agricultural land classification (Ma et al., 2019). Despite their success, deep learning methods require substantial computational resources and large labeled datasets, which can limit their applicability in some contexts.

2.3 Applications of LULC Classification

LULC classification has broad applications across environmental and socio-economic domains:

- Urban Planning: Mapping urban expansion supports sustainable city planning (Herold et al., 2003).
- Agriculture: Remote sensing aids in crop monitoring, yield prediction, and land suitability assessments (Thenkabail et al., 2009).
- Forestry: LULC classification contributes to deforestation monitoring, forest fire mapping, forest biomass estimation, and biodiversity assessments (Hansen et al., 2013).
- Hydrology: RS-based LULC data are integral to hydrological modeling, particularly for runoff prediction and watershed management and flood management (Niehoff et al., 2002).
- Climate Change Studies: LULC changes influence carbon cycles and climate models, making accurate classification essential for global environmental monitoring (Foley et al., 2005).

2.4 Challenges and Limitations

challenges **LULC** classification: Despite advances, several persist in 1. Mixed Pixels: In medium-resolution imagery, mixed pixels reduce classification accuracy, especially landscapes 1997). in heterogeneous (Fisher. 2. Spectral Confusion: Different land cover types often exhibit similar spectral signatures, leading misclassification (Foody, 2002). to

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved. Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023

- 3. Data Integration: Combining optical, radar, and LiDAR data poses technical and methodological challenges (Li et al., 2013).
- 4. Computational Demand: Advanced techniques, particularly deep learning, require high computational resources (Zhu et al., 2017).
- 5. Ground Truth Data: The availability and quality of reference data remain a critical factor in achieving reliable classifications (Congalton & Green, 2008).

Comparative Overview of Classification Methods

See table below.

Method	lethod Advantages		Applications	
Pixel-Based (MLC,	Simple, widely	Low accuracy in	Early LULC	
k-means)	used,	heterogeneous areas	studies, baseline	
	computationally		maps	
	light			
OBIA	Incorporates spatial	Sensitive to	Urban mapping,	
	context, reduces	segmentation	detailed landscapes	
	noise	parameters		
Machine Learning	High accuracy,	Requires parameter	Agriculture,	
(RF, SVM)	handles complex	tuning, training data	forestry,	
	data		biodiversity	
Deep Learning	Superior accuracy,	Data- and resource-	Urban growth,	
(CNNs) hierarchical feat		intensive	climate monitoring	

Remote sensing has transformed LULC classification, evolving from pixel-based methods to advanced machine learning and deep learning approaches. While traditional methods remain useful for baseline studies, modern techniques offer greater accuracy and robustness, particularly when combined with multi-source data. Challenges such as mixed pixels, data integration, and computational demand persist, but innovations in data fusion and cloud computing continue to address these barriers. Future research will likely focus on harmonizing multiple data types, enhancing transferability across regions, and leveraging AI-driven methods to provide near real-time LULC monitoring.

In this paper Supervised classification using GIS method is used, where sample datset is provided for each class based on theses sample dataset classification is done, the work is done to quantify role of develoment of infrastructure on land Basically agriculture and barren land.

3. Study Area: The stretch used in the search lies between Deodhai village to Harchandpur village (NH-48) and is located 10 km away from Rewari City in the southern part Haryana, India. It is located at an area extending from 28° 07'31.06" N to 28° 04' 53.84" N latitude and from 76° 38'10.56" E to 76° 34' 21.06" E Longitude.

4. Methodology:

We employed Google Earth Pro to evaluate and identify land use and land cover from aerial imagery of the region. The imaging data spans a period of 16 years, from 2006 to 2021. This study employed Google Earth Pro, QGIS, and ERDAS Imagine 2014 software. After the supervised classification of images using ERDAS Imagine 2014 for the years 2006, 2014, and

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023 2021, we saw substantial changes in arable land, desolate areas, developed regions, and aquatic environments.

Table 1: Software Used

Software	Function			
Google Earth Pro	Data Capture, data visualization, data Creation, Real – time streaming			
Q GIS	Displays multiple layers, geo references			
ERDAS Imagine 2014	Simplifies image classification (supervised & Unsupervised			
classification), image interpretation.				

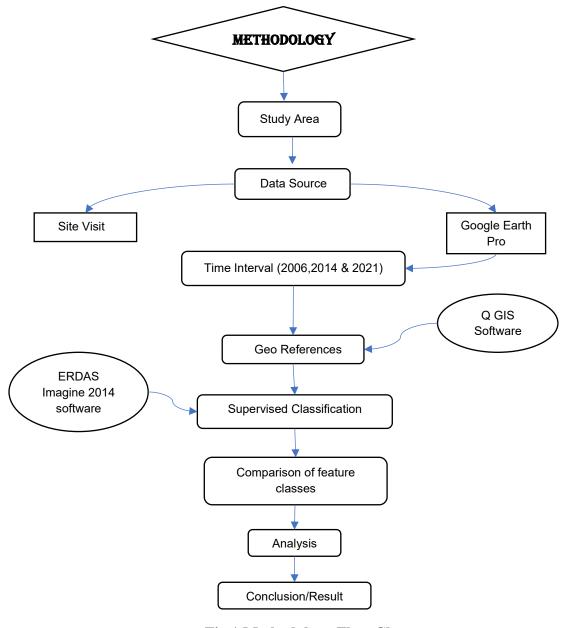


Fig 1 Methodology Flow Chart

5. Data Analysis:

The main data used in this study is an aerial image of a road development area .These images are obtained based on a database from Google Earth pro The road section that are analyzed in

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023 this study is from Deodhai village to the Harchandpur village expressway the length of road stretch of site is 7.87km with six-lane two-way divided expressway.

5.1 Location of study area

The pictures of the Rewari district NH-48 which was taken by the google earth pro follows as:

Figure2: The topographical Image of year 2006 of an Expressway (six – lane two way) in Deodhai village, district Rewari ,Haryana

Figure3:The topographical Image of year 2014 (harvested season) Expressway (six-lane two way) in Deodhai village, district Rewari, Haryana of the year 2014

ISSN PRINT 2319 1775 Online 2320 7876

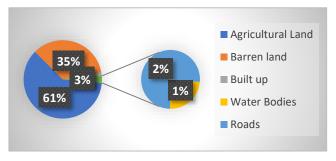
Figure4: The topographical Image of year 2021 Expressway (six – lane two way) in Deodhai village, district Rewari , Haryana

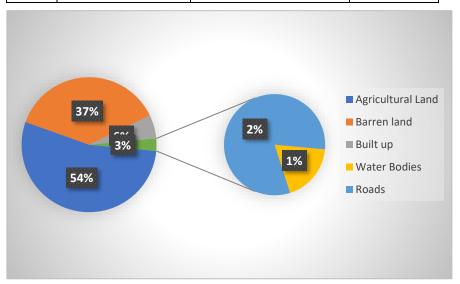
5.2 Land Use land Cover at Deodhai village NH-48 Rewari district , Haryana

The following tables are shows the land use land cover in the period between 2006 to 2021 as shown below:

Table 2: Area Statistics of Rewari district of Haryana, the Year 2006

Land Use Land cover of Delhi - Jaipur Expressway NH-48 (2006)					
Sr.		Area (in square	Area (in		
No	LULC Class	Km)	%)		
	Agricultural				
1	Land	4615.32	61.03		
2	Barren land	2625.64	34.72		
3	Built up	109.65	1.45		
4	Water Bodies	50.67	0.67		
5	Roads	161.07	2.13		
	Total	7562.34	100		




Figure 1: Pie Chart Showing land use land cover at Rewari district of Haryana NH-48Year 2006

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023

Table 3: Area Statistics of Rewari district of Haryana, Year 2014

Land Use Land cover of Delhi - Jaipur Expressway NH-48 (2014)					
Sr. No	LULC Class	Area (in square Km)	Area (in %)		
1	Agricultural Land	4082.65	53.99		
2	Barren land	2823.02	37.43		
3	Built up	425.67	5.634		
4	Water Bodies	42.34	0.56		
5	Roads	174.70	2.31		
	Total	7562.34	100		

Figure 2: Pie Chart Showing land use land cover at Rewari district of Haryana NH-48 ,Year 2014

Table 4: Area Statistics of Rewari district of Haryana, Year 2021

Land Use Land cover of Delhi - Jaipur Expressway NH-48 (2021)					
Sr. No	LULC Class	Area (in square Km)	Area (in %)		
1	Agricultural Land	3680.591	48.67		
2	Barren land	1993.433	26.36		
3	Built up	1362.734	18.02		
4	Water Bodies	165.6152	2.19		
5	Roads	359.9674	4.76		
	Total	7562.34	100		

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023

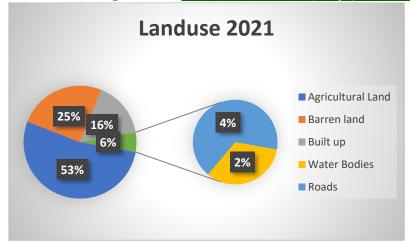


Figure 3: Pie Chart Showing land use land cover at Rewari district of Haryana NH-48 , the $Year\ 2021$

Table 4: Area statistics of NH-48 Rewari district of Haryana, Year 2006, 2014& 2021

Year	Land use (in %)				
	Agricultural Land	Barren land	Built up	Water Bodies	Roads
2006	61.03	34.72	1.45	0.67	2.13
2014	53.99	37.43	5.64	0.56	2.31
2021	48.67	28.67	18.02	2.09	4.73

5.3 Land use land Cover (LULC) Classification through ERDAS Software

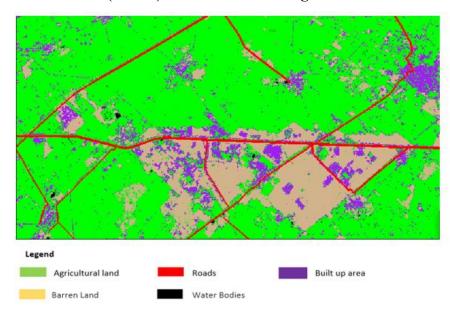


Figure 4: Land Use / Cover Map of Rewari District - NH48 Year 2006

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved. Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023

Legend

Agricultural land

Roads

Built up area

Figure 5: Land Use / Cover Map of Rewari District - NH48 Year 2014

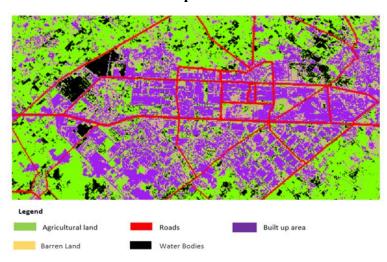


Figure 6: Land Use / Cover Map of Rewari District – NH48 Year 2021

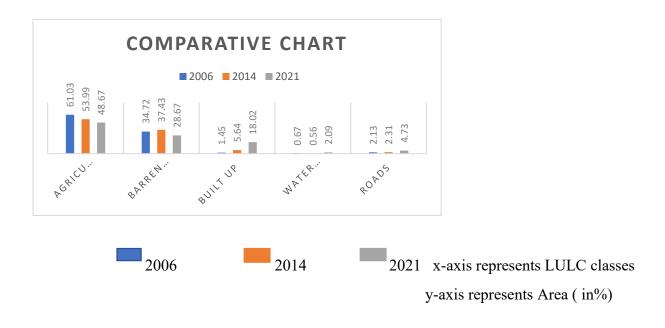


Figure 7: Bar graph showing land use land cover at Rewari district of Haryana NH-48

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023

5.4 Change Detection: Comparison between LULC Year 2006 to 2021

The following table shows the comparative study of the percentage of change that happened as:

Table5: Showing comparative percentage of land use and land cover of NH-48

Change detection at NH-48 between 2006 and 2021 (Area in				
%)				
SI no.	LULC class	2006	2021	change
1	Agricultural Land	61.03	48.67	-12.36
2	Barren land	34.72	28.67	-6.05
3	Built up	1.45	18.02	16.57
4	Water Bodies	0.67	2.09	1.42
5	road	2.13	4.73	2.6
	Total	100	100	

The expansion of infrastructure has resulted in a significant reduction of cultivated land; in 2006, agricultural land constituted 61.03%, but due to rapid development along the expressway, this figure is projected to decline to 48.67% by 2021. The settlement of infrastructure barren has also declined from 34.72% to 28.67%. The analysis indicates that the growth rate of the built-up area at the inception of the expressway was 0.85% in 2006, which subsequently escalated to 16.62% by 2021. During this era, road connectivity has improved from 2.13% in 2006 to 4.73% in 2021, enhancing the comfort of residents. To enhance comprehension, we have attempted to evaluate using graphs.

6. Conclusion:

The analysis indicates a reduction in agricultural and barren areas due to infrastructure development, which also demonstrates an enhancement in road connections for the mobility of individuals. The rate of infrastructure development along NH-48 accelerated more rapidly than in 2006. The data indicates that the proportion of developed land usage is increasing annually. Such Analysis helps predict the possible effect on land use patterns from the development of roads or infrastructure, and enables planners to decide on the rate of development without hampering the land use pattern of the area.

References:

- [1] Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31.
- [2] Blaschke, T. (2010). Object-based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.
- Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: Principles and practices. CRC Press.
- [3] Drusch, M., et al. (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36.
- Fisher, P. (1997). The pixel: A snare and a delusion. International Journal of Remote Sensing, 18(3), 679–685.
- [4] Foley, J. A., et al. (2005). Global consequences of land use. Science, 309(5734), 570–574.
- [5] Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal UGC CARE Listed (Group-I) Volume 12, Issue 01 2023

- [6] Hansen, M. C., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.
- [7] Herold, M., et al. (2003). Remote sensing of urban environments. Remote Sensing of Environment, 86(3), 286–302.
- [8] Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective. Prentice Hall.
- [9] Lee, J. S., & Pottier, E. (2009). Polarimetric radar imaging: From basics to applications. CRC Press.
- [10] Li, J., et al. (2013). Integration of LiDAR and optical imagery for land cover mapping. Remote Sensing of Environment, 134, 1–9.
- [11] Lillesand, T., Kiefer, R., & Chipman, J. (2015). Remote sensing and image interpretation (7th ed.). Wiley.
- [12] Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques. International Journal of Remote Sensing, 28(5), 823–870.
- [13] Ma, L., et al. (2019). Deep learning in remote sensing applications. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177.
- [14] Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.
- [15] Myint, S. W., et al. (2011). Per-pixel vs. object-based classification of urban land cover. Remote Sensing of Environment, 115(5), 1145–1161.
- [16] Niehoff, D., et al. (2002). Land use impact on flood generation. Physics and Chemistry of the Earth, 27(9), 641–650.
- [17] Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222.
- [18] Richards, J. A., & Jia, X. (2006). Remote sensing digital image analysis. Springer.
- [19] Thenkabail, P. S., et al. (2009). Remote sensing of global croplands. Remote Sensing of Environment, 108(4), 255–273.

