ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 02, 2022

#### Effect of obesity on body Joint angles in female Children during walking

**Ravinder kour<sup>1</sup>, Dr. Amarpreet Singl**<sup>2</sup>, **Dr. Surjeet Singl**<sup>3</sup> <sup>3</sup>Assistant Professor, Punjabi university Patiala <sup>3</sup>Assistant Professor Directorate of Physical Education and Sports, University of Kashmir

#### Abstract

Obesity is one of the leading health complications in the world, one of the most serious public health challenges of the 21st century it effect on every system of human body, locomotory system. The present study is a quantitative study, which was designed to investigate the effect of obesity on different body joints in obese & non-obese females aged between 12-14 years. The whole sample consisted of 50 subjects with equal number of obese (50) and non-obese (50) females. The subjects were instructed to run across a pre-designed walkway at their maximum speeds. During this, they were filmed using high-resolution cameras. The criterion measures of interest were different joint angles of lower extermities. Conclusion: significant difference was found in selected body joint angles between obese and non-obese females of same age category. Obese female have higher joint angle than non obeses female in all selected joints angles.

The leading World Health Organization (W.H.O) considers obesity as one of the serious public health issues of the 21<sup>st</sup> century. Obesity may be defined as the accumulation of excess body fat. This definition may vary on the basis of region in many Western countries like USA, many European countries its defined by body mass index (BMI). The BMI is calculated by dividing the weight over the square of height. If the BMI is higher than 30 kg/m2 then it indicates the obesity. Under that range it is classified as overweight, average weight and underweight. In addition to normal activity in our daily life if someone is encouraged to participate in sports activities in children and adolescents has received considerable attention for combating the obesity epidemic. Obesity is known to be associated with biomechanical alterations in the gait pattern, which may predispose children and adolescents with overweight or obesity (OW/OB) to short- and long-term musculoskeletal disorders (MSKD). From early childhood, OW/OB has been associated to the development of various MSKD (i.e., musculoskeletal pain, injuries and fractures) which may be extended to adulthood with notable consequences with regard to physical disability, quality of life and healthcare economic costs. Among other suggested explanations, increased joint loads, together with biomechanical alterations during loco-motor tasks, may be underlying the higher prevalence of MSKD in this population.



ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, 155 02, 2022

Furthermore, previous research has revealed that OW/OB show energetic inefficiency during running which could be partially explained by a biomechanically inefficient gait pattern.

The objective of the present study was to find the difference in walking between various joint angles of Obese and non obese subjects during intial stage, mid stance phase and toe of phase of walking

#### Methodology

A total 100 female children (50 obese & 50 non-obese) whose age ranges from 12-14 years were selected for the present study. After studying literatures related to the study and consultation with experts, following variables were selected for the present study. The subject's walking gait was recorded using two synchronized Legaria SF10 Cannon Camcorder. The specifications were full HD 1080, 8.1 Mega Pixels, 10x Optical Zoom, a shutter speed of 1/2000, Aperture value of maximum (F 1.8) and minimum (F8.0) and frame rate of 50 Hz. It also contains video compression format (MEEG/JPEG), having hard disk and USB cable to transport videos from the hard disk by connecting it to the computer. To analyze the clipped or slashed video recording of the running gait of school children, softwares; Xilisoft Video Converter Ultimate 6.0 and Silicon Coach Pro-7 were used. These motion analysis softwares provide to identify and quantify the angles, velocity, displacement, time, and number of frames of the selected biomechanical parameters of the study.

|       |            | Ν   | Mean   | S. D  | S.E  | 95% Co   | nfidence |
|-------|------------|-----|--------|-------|------|----------|----------|
|       |            |     |        |       |      | Interval | for Mean |
|       |            |     |        |       |      | Lower    | Upper    |
|       |            |     |        |       |      | Bound    | Bound    |
| Ankle | Non- obese | 50  | 112.10 | 1.40  | .19  | 111.70   | 112.49   |
| joint | Obese      | 50  | 124.52 | 2.90  | .41  | 123.69   | 125.34   |
| Angle | Total      | 100 | 118.31 | 6.64  | .66  | 116.99   | 119.62   |
| Knee  | Non- obese | 50  | 152.14 | 3.05  | .43  | 151.27   | 153.00   |
| Joint | Obese      | 50  | 172.90 | 2.11  | .29  | 172.29   | 173.50   |
| angle | Total      | 100 | 162.52 | 10.75 | 1.07 | 160.38   | 164.65   |
| Hip   | Non- obese | 50  | 144.46 | 2.74  | .38  | 143.67   | 145.24   |
| joint | Obese      | 50  | 153.82 | 2.71  | .38  | 153.04   | 154.59   |
| angle | Total      | 100 | 149.14 | 5.43  | .54  | 148.06   | 150.21   |

| T 11 1 D              | C4.4.4. CD        | I T. • . 4 A I  | 1 . Т. ч. 1    |               |
|-----------------------|-------------------|-----------------|----------------|---------------|
| 1 able 1: Descriptive | Statistics of Boo | iy Joint Angles | during Initial | Contact Phase |



ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 02, 2022

Table 1 reveals the means & Standard Deviation of 12-14 years Non-obese & Obese females aged 12-14 years for the selected kinematic parameters during the initial contact phase of walking gait. The the mean and Standard Deviation of Ankle Joint Angle of Non-obese girls was  $112.10 \pm 1.40$  deg, and of Obese girls is  $124.52 \pm 2.90$  deg. The mean and SD of Knee Joint Angle of Non-obese girls was  $152.14 \pm 3.05$  deg, and of Obese girls was  $172.90 \pm 2.11$  deg. The mean and SD of Hip Joint Angle of Non-obese girls was  $144.46 \pm 2.74$  deg, and of Obese girls was  $153.82 \pm 2.71$  deg.

|                   |             | Sum of   | d.f | Mean     | F       | Sig. |
|-------------------|-------------|----------|-----|----------|---------|------|
|                   |             | Squares  |     | Square   |         |      |
| Ankle joint Angle | Between the | 3856.41  | 1   | 3856.41  | 742.52  | .001 |
|                   | Groups      |          |     |          |         |      |
|                   | Within the  | 508.98   | 98  | 5.19     |         |      |
|                   | Groups      |          |     |          |         |      |
|                   | Total       | 4365.39  | 99  |          |         |      |
| Knee Joint angle  | Between the | 10774.44 | 1   | 10774.44 | 1560.77 | .000 |
|                   | Groups      |          |     |          |         |      |
|                   | Within the  | 676.52   | 98  | 6.90     |         |      |
|                   | Groups      |          |     |          |         |      |
|                   | Total       | 11450.96 | 99  |          |         |      |
| Hip Joint Angle   | Between the | 2190.24  | 1   | 2190.24  | 293.30  | .003 |
|                   | Groups      |          |     |          |         |      |
|                   | Within the  | 731.80   | 98  | 7.46     |         |      |
|                   | Groups      |          |     |          |         |      |
|                   | Total       | 2922.04  | 99  |          |         |      |

#### Table 2: Descriptive analysis of the variance (ANOVA) of Body Joint Angles

One-way analysis of the variance (ANOVA) was applied to check the difference in body joint angles (Ankle Joint, Knee Joint and Hip Joint) at Initial Contact Phase of walking gait, between Obese and Non-obese females aged (12-14) years. Table 4.8 shows that there was a significant difference in all the three joint angles i.e Ankle Joint, Knee Joint and Hip Joint Angle between Non-obese & obese females at the p < 0.05 level, (F = 742.52, p =0.00) for Ankle Joint angle, for Knee joint angle (F = 1560.77, p =0.00) and for Hip Joint angle (F = 293.30, p =0.00). Therefore, results suggest that an Ankle Joint Angle, Knee Joint Angle, and Hip Joint Angle of Obese female is higher than Non- obese females of same age categor



ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 02, 2022

# Table 3. Descriptive Statistics of Body Joint Angles during Mid Stance Phase during Mid Stance

|                    |            | N   | Mean   | S. D  | S. E | 95% Coi    | nfidence |
|--------------------|------------|-----|--------|-------|------|------------|----------|
|                    |            |     |        |       |      | Interval f | for Mean |
|                    |            |     |        |       |      | Lower      | Upper    |
|                    |            |     |        |       |      | Bound      | Bound    |
| Ankle joint        | Non- obese | 50  | 93.90  | 1.65  | .23  | 93.42      | 94.37    |
| (Degrees)          | Obese      | 50  | 108.70 | 4.04  | .57  | 107.54     | 109.85   |
| (Degrees)          | Total      | 100 | 101.30 | 8.04  | .80  | 99.70      | 102.89   |
| Knee Joint         | Non- obese | 50  | 135.02 | 3.06  | .43  | 134.15     | 135.88   |
| (Degrees)          | Obese      | 50  | 154.28 | 1.88  | .26  | 153.74     | 154.81   |
| (Degrees)          | Total      | 100 | 144.65 | 10.00 | 1.04 | 142.66     | 146.63   |
| Hip Joint          | Non- obese | 50  | 155.34 | 2.86  | .40  | 154.52     | 156.15   |
| Angle<br>(Degrees) | Obese      | 50  | 164.32 | 2.74  | .38  | 163.54     | 165.09   |
| (Degrees)          | Total      | 100 | 159.83 | 5.30  | .53  | 158.77     | 160.88   |

Table 3 shows the means and SD of 12-14 years Non-obese & Obese subject was aged 12-14 years for the selected kinematic variables during Mid-stance phase of walking gait in which the mean and SD of Ankle Joint Angle of Non-obese subject was  $93.90 \pm 1.65$  deg, and of Obese subject was  $108.70 \pm 4.04$  deg. The mean and SD of Knee Joint Angle of Non-obese subject was  $135.02 \pm 3.06$  deg, and of Obese subject was  $154.28 \pm 1.88$  deg. The mean and standard deviation of Hip Joint Angle of Non-obese subject was  $155.34 \pm 2.86$  deg, and of Obese subject was  $164.32 \pm 2.74$  deg.

Table 4: Analysis of variances (ANOVA)) of Body Joint Angles

|                   |                    | Sum of<br>Squares | df | Mean<br>Square | F       | Sig. |
|-------------------|--------------------|-------------------|----|----------------|---------|------|
| Ankle joint angle | Between the groups | 5476.00           | 1  | 5476.00        | 572.73  | .003 |
|                   | Within the groups  | 937.00            | 98 | 9.56           |         |      |
|                   | Total              | 6413.00           | 99 |                |         |      |
| Knee Joint angle  | Between the groups | 9273.69           | 1  | 9273.69        | 1435.60 | .005 |



|                 | Within the groups  | 633.06  | 98 | 6.46    |        |      |
|-----------------|--------------------|---------|----|---------|--------|------|
|                 | Total              | 9906.75 | 99 |         |        |      |
| Hip Joint Angle | Between the groups | 2016.01 | 1  | 2016.01 | 255.88 | .010 |
|                 | Within the groups  | 772.10  | 98 | 7.87    |        |      |
|                 | Total              | 2788.11 | 99 |         |        |      |

ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 02, 2022

One-way analysis of the variance (ANOVA) was applied was to investigate the difference in body joint angles (Ankle Joint, Knee Joint and Hip Joint) at Mid-stance Phase of walking gait, between Obese and Non-obese females aged (12-14) years. Results of table 4.10 reveal that there was a statistically significant difference in all the three joint angles i.e. Ankle Joint Angle, Knee Joint Angle & Hip Joint Angle between Non-obese & obese females at the p < 0.05 level, (F = 572.73, p =0.00) for Ankle Joint angle for Knee joint angle (F = 1435.60, p =0.00) and for Hip Joint angle (F = 255.88, p =0.00). Therefore, results suggest that an Ankle Joint Angle, Knee Joint Angle & Hip Joint Angle of Obese female is higher than Non- obese females of same age category.

|           |       | Ν   | Mean   | S D     | S. E | 95% Coi  | nfidence |
|-----------|-------|-----|--------|---------|------|----------|----------|
|           |       |     |        |         |      | Interval | for Mean |
|           |       |     |        |         |      | Lower    | Upper    |
|           |       |     |        |         |      | Bound    | Bound    |
| Ankle     | Non-  | 50  | 142.86 | 2.39    | .33  | 142.18   | 143.53   |
| joint     | obese |     |        |         |      |          |          |
| Angle     | Obese | 50  | 152.36 | 2.67    | .37  | 151.59   | 153.12   |
| (Degrees  | Total | 100 | 147.61 | 5.40    | .54  | 146.53   | 148.68   |
| Knee      | Non-  | 50  | 154.16 | 3.22    | .45  | 153.24   | 155.07   |
| Joint     | obese |     |        |         |      |          |          |
| angle     | Obese | 50  | 172.04 | 1.42    | .20  | 171.63   | 172.44   |
| (Degrees  | Total | 100 | 163.10 | 9.32196 | .93  | 161.25   | 164.94   |
| Hip Joint | Non-  | 50  | 165.04 | 2.41560 | .34  | 164.35   | 165.72   |
| Angle     | obese |     |        |         |      |          |          |
| (Degree   | Obese | 50  | 173.76 | 2.60737 | .36  | 173.01   | 174.50   |
|           | Total | 100 | 169.40 | 5.04525 | .50  | 168.39   | 170.40   |

#### Table 5: Descriptive Statistics of Body joint angles Toe Off Phase

Table 5 presents the means and SD of 12-14 years Non-obese & Obese females aged 12-14 years for the selected kinematic parameters during Toe-Off phase of walking gait in which



ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 02, 2022

the mean and SD of Ankle Joint Angle of Non-obese girls is  $142.86 \pm 2.39$  deg, and of Obese girls is  $152.36 \pm 2.67$  deg. The mean and standard deviation of Knee Joint Angle of Non-obese girls is  $154.16 \pm 3.22$  deg, and of Obese girls was  $172.04 \pm 1.44$  degree. The mean and Standard deviation of Hip Joint Angle of Non-obese girls was  $165.04 \pm 2.42$  deg, and of Obese girls is  $173.76 \pm 2.60$  deg.

|                   |             | Sum of  | df | Mean    | F      | Sig. |
|-------------------|-------------|---------|----|---------|--------|------|
|                   |             | Squares |    | Square  |        |      |
| Ankle joint Angle | Between the | 2256.25 | 1  | 2256.25 | 350.11 | .050 |
| (Degrees)         | groups      |         |    |         |        |      |
|                   | Within the  | 631.54  | 98 | 6.44    |        |      |
|                   | groups      |         |    |         |        |      |
|                   | Total       | 2887.79 | 99 |         |        |      |
| Knee Joint angle  | Between the | 7992.36 | 1  | 7992.36 | 1282.6 | .040 |
| (Degrees)         | groups      |         |    |         |        |      |
|                   | Within the  | 610.64  | 98 | 6.23    |        |      |
|                   | groups      |         |    |         |        |      |
|                   | Total       | 8603.00 | 99 |         |        |      |
| Hip Joint Angle   | Between the | 1900.96 | 1  | 1900.96 | 300.94 | .003 |
| (Degrees)         | groups      |         |    |         |        |      |
|                   | Within the  | 619.040 | 98 | 6.31    | 1      |      |
|                   | groups      |         |    |         |        |      |
|                   | Total       | 2520.00 | 99 |         |        |      |

#### Table 6: Analysis of the variance (ANOVA) Summary of Body Joint Angles

One-way analysis of the variance (ANOVA) was applied to check the difference in body joint angles (Ankle Joint, Knee Joint, and Hip Joint) at Toe-Off Phase of walking gait, between Obese and Non-obese females aged (12-14) years. Results of table 4.11 shows that there was a statistically significant difference in all the three joint angles i.e Ankle Joint Angle, Knee Joint Angle, and Hip Joint angle between Non-obese & obese females at the p < 0.05 level, (F = 350.16, p =0.00) for ankle joint angle, for knee joint angle (F = 1282.67, p =0.00) and for hip Joint angle (F = 300.94, p =0.00). Therefore, results suggest that an ankle Joint angle, knee Joint angle & Hip Joint Angl

#### Results



#### ISSN PRINT 2319 1775 Online 2320 7876 Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, Iss 02, 2022

# Initial Contact Phase of Gait Cycle

| S. No | Variables                                             | Result                                                                                              | Description of results                                                                               |
|-------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1     | Ankle Joint Angle<br>(Degº)                           | Significant difference was<br>seen in Ankle Joint Angle<br>between non-obese &<br>obese females     | the Ankle Joint Angle of obese females<br>is higher than non- obese females of<br>same age category. |
| 2     | Knee Joint angle<br>measured in<br>Degre <sup>e</sup> | statistically significant<br>difference in Knee Joint<br>Angle between non-obese<br>& obese females | Obese females has higher knee joint<br>angle than non- obese females of<br>same age category.        |
| 3     | Hip Joint angle<br>measured in<br>Degre <sup>e</sup>  | statistically significant<br>difference in Hip Joint<br>Angle between non-obese<br>& obese females  | Obese females has higher hip joint<br>angle than non- obese females of<br>same age category.         |

## At Mid-Stance Phase of gait cycle

| S. No | Variables           | Result                    | Description of results                |
|-------|---------------------|---------------------------|---------------------------------------|
| 1     | Ankle Joint Angle   | Statistically significant | The ankle Joint Angle of obese        |
|       | (Deg <sup>o</sup> ) | difference was seen in    | females is higher than non- obese     |
|       |                     | Ankle Joint Angle between | females of same age category.         |
|       |                     | non-obese & obese         |                                       |
|       |                     | females                   |                                       |
| 2     | Knee Joint Angle    | statistically significant | the Knee Joint Angle of obese females |
|       | measured in         | difference in Knee Joint  | is higher than non- obese females of  |
|       | Degre <sup>e</sup>  | Angle between non-obese   | same age category.                    |
|       |                     | & obese females           |                                       |
|       |                     |                           |                                       |
| 3     | Hip Joint Angle     | statistically significant | Obese females has higher hip joint    |
|       | measured in         | difference in Hip Joint   | angle than non- obese females of      |
|       | Degre <sup>e</sup>  | Angle between non-obese   | same age category.                    |
|       |                     | & obese females           |                                       |
|       |                     |                           |                                       |

### At Toe Off Phase

| S. No | Variables           | Result                                  | Description of results              |
|-------|---------------------|-----------------------------------------|-------------------------------------|
| 1     | Ankle Joint Angle   | statistically significant               | The ankle Joint Angle of obese      |
|       | measured in         | difference in Ankle Joint               | females is higher than non- obese   |
|       | Degre <sup>e</sup>  | Angle between non-obese & obese females | females of same age category.       |
|       |                     | a obese remaies                         |                                     |
| 2     | Knee Joint Angle    | statistically significant               | Obese females has higher Knee       |
|       | (Deg <sup>0</sup> ) | difference in Knee Joint                | joint angle than non- obese females |



ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, Journal Volume 11, 155 02, 2022

|   |                           | Angle between non-obese<br>& obese females                                                         | of same age category.                                                                                 |
|---|---------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 3 | Hip Joint Angle<br>(Degº) | statistically significant<br>difference in Hip Joint<br>Angle between non-obese<br>& obese females | At Hip Joint the Angle of obese<br>females is higher than non- obese<br>females of same age category. |

References

- Bramble, D. M., & Lieberman, D. E. (2004). Endurance running and the evolution of Homo. *Nature*, 432: 345-352.
- Drewnowski, A., & Popkin, B.M. (1997). The nutrition transition: new trends in the global diet. *Nutrition Reviews*; 55: 31-43
- Hills, A.P., & Parker, A.W. (1991). Gait asymmetry in obese children. *Neuro-orthopedics* 12:29-33
- Sutherland, D. H., & Hagy, J. L. (1972). Measurement of gait movements from motion picture film. *Journal of Bone and Joint Surgery (A), 54: 787-797.*
- Spyropoulos, P., Pisciotta, JC., Pavlou, K.N., Cairns, M.A., & Simon, S.R. (1991).
  Biomechanical gait analysis in obese men. *Archives of Physical Medicine Rehabilitation*, 72 (13), pp. 1065 –1070
- Songhua Yan, Weiyan Ren, Xiuqiao Liangd, Kuan Zhang (2014)"Gait Characteristics of Overweight and Obese Children with Different Ages" The 7th International Congress on Image and Signal Processing
- James, W.P.T. (1995). A public health approach to the problem of obesity. *International Journal of Obesity* 19:S37-S45

Kopelman, P.G. (2000). Obesity as a medical problem. Nature, 404:635-43

