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Abstract : We have attempted to explore some cosmological scenarios arising from the field 

equations with variable  (cosmological constant) taken in a way which conserves the matter 

tensor. From the field equations and the conservation equation, an equation is obtained in , R, 

, which points out two trivial solutions: 2  / = 3
2
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 and   = 0. The 

solutions of the field equations have been investigated for  = /R
2
 where  is a fixed pure 

number of the order of unity.   

Introduction :  In Einstein’s field equations, there are two parameters, the cosmological 

constant , and the gravitational constant G. The Newtonian constant of gravitation G, plays 

the role of a coupling constant between geometry any matter in the Einstein field equations. 

Numerous arguments have been proposed in the past few decades in which G varies with time, 

such as Bergmann
[4]

, Dirac
[7]

, Dreitlein
[8]

, Gasperini
[9]

, Hoyle
[10, 11]

, Linde
[14]

 and Wesson
[16]

. 

The cosmological constant  as a function of time has also been considered by several authors 

in various variable G theories by Bicknell
[6]

 and Lau
[13]

. Several authors such as Beeshan
[3]

 and 

Kalligas
[12]

 have proposed to link the variation of G with that of . This approach preverses the 

conservation of the energy momentum tensor and leaves the form of the Einstein field 

equations unchanged, Pradhan
[15]

 presented cylindrically symmetric inhomogeneous 

cosmological models with viscous fluid and varying . Bali and Rareek
[2]

 have investigated 

Bianchi Type V magnetized string dust cosmological models with Pertov-type degenerate. In 

this paper our aim is to explore some cosmological scenarios arising from field equations with 

variable G and  taken in a way which conserves the matter tensor.  
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The Field Equations : Let us consider an isotropic and homogeneous space time presented by 

Friedman –Robertson- Walker (FRW) metric together with perfect fluid. The Einstein field 

equation gives two independent equations with time dependent G and  as 
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where we have taken an equation of state p = ,  = constant. In view of equations (1) and 

(2), we obtain  
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 The law of conservation gives.  
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 Hence, we obtain  
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 Integrating eq. (4), one obtains  

  = CR
-3(1+)

, C = Constant > 0.       (6) 

Thus, we get  
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where the subscript zero denotes for the value of the quantity at t =0. If we put  = -1, we get 

 = 0, implies  = constant. If we consider 0 we obtain 
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 Now R(t) must satisfy the differential equation 
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where H = RR / be the Hubble parameter.  

A Trivial Solution :  A trivial solution of eq. (8) reads  
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Several authors have suggested the from of  as  = Const./R
2
. However in the present case 

the constant assumes different values in different phases, for example, in radiation-dominated 

phase  = 1/3, in matter-dominated phase  = 0. Again, we obtain  

 ,0)1(32 2  HH            (11) 

which gives solution  
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and hence, 
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where m be the constant of integration, with R = 0 at t = 0. is obvious that R is independent of 

k. R   . This is a significant deviation from the standard model. However,  >0, required a 

spatially compact universe. One may evaluate the time t= tcau, when the whole universe 

becomes causally connected.  

Hence, we get  
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here we obtain  

 ,6)1( 0cGm            (15) 

for self consistency of the system. It is obvious that G has finite non-zero value G0  initially. It 

goes on increasing as t in RD phase and then t
2/3

 in MD phase with 0G as t . It is 

interesting to note that the deceleration parameter q = - 2/ RHR is constant in this model. i.e. 
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31 
q          (16) 

showing that q = 1 and ½ in RD and MD phases respectively.  

Solution for  = /R2
 :For this given value of , one obtains 
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where A be constant of integration  
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 Now, we obtain  
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which shows that 0
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R  accordingly as 0




A  It is obvious that for non-zero  and R0, one may 

select A < 0 to avoid 0R and hence the initial singularity. For A = 0, which gives a linearly 

expanding universe.  
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where  as the constant of integration. Case (1) For R0  and H0 = 0, we get ,4
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3

2
  for expansion. For  = 3, we recover the model by 

Abdel – Rahman
[1]

, Case (ii) R0 = 0, we get  
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. For A > 0, we get 
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where B3 be the constant of integration. Hence, in MD phase it is described by equation (23) 

depending upon the values of k and . 

Solutions for Constant Density : For  = constant = c, we get  

 ,0)1(  R                (24) 

showing three possibilities (1)  = = -1 with R = R (t) (ii) R = constant = Rc with   -1 (iii) R 

= Rc with  = -1. In view of the above, we get  
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showing a inflation for  > 0 and G > 0, and we obtain  
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showing classical inflation as obtained by Kalligas
[12]

. For static universe with R = Rc, we 

obtain  

 ,
)01(

)31(
2

cR






    ,

)1(4 2

ccR

k
G

 
     (28) 



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 

Research paper© 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11, Iss 10, 2022 

5106 

 

Concluding Remarks : We have presented two trivial solutions: 2/3/2    with 
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yields a model starting from by 

bang with finite G0 and has a phase  wise constant deceleration parameter q. The model 

reduces to standard model for k = 0. We recover the Berman
[5]

 result for q  = 1/2 in the present 

phase of evolution. We have also investigated for  = /R
2
. In special case, a linearly 

expanding model is obtained which is free from horizon  problem. We recover the model of 

Abdel- Rahman
[1]

  with   = -1. 
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