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Abstract: we analyzed the nonlinear unsteady MHD flow of viscous, incompressible and 

electrically conducting fluid past a vertical porous channel under theinfluence of thermal 

radiation and chemical reaction. We observed how various parameters affect the flow past an 

infinite vertical accelerated plate. 

 Introduction:  

Viscoelastic flows arise in numerous processes in chemical engineering systems. Such flows 

possess both viscous and elastic properties and can exhibit normal stresses and relaxation 

effects. An extensive range of mathematical models has been developed to simulate the 

diverse hydrodynamic behavior of these non-Newtonian fluids. An eloquent exposition of 

viscoelastic fluid models has been presented by Joseph. Examples of such models are the 

Oldroyd model, Johnson–Seagalman model, the upper convected Maxwell model, and the 

Walters-B model. Both steady and unsteady flows have been investigated at length in a 

diverse range of geometries using a wide spectrum of analytical and computational methods. 

Siddappa and Khapate  studied the second order Rivlin–Ericksen viscoelastic boundary layer 

flow along a stretching surface. Rochelle and Peddieson  used an implicit difference scheme 

to analyze the steady boundary-layer flow of a nonlinear Maxwell viscoelastic fluid past a 

parabola and a paraboloid. Ji et al.  studied  the  Von  Karman     Oldroyd-B viscoelastic          

flow from a rotating disk using the Galerkin method with B-spline test functions. 

 Consider unsteady hydromagnitic free convective flow of incompressible and 

electrically conducting fluid past an infinite vertical porous plate in the presence of constant 

suction and heat absorbing sink through porous media. Let the x-axis be taken in the 

vertically upward direction along the infinite vertical plate and y-axis normal to it.  

Boussineq’s approximation, for the equations of the flow is governed as: 
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The boundary condition for the velocity, temperature and concentration fields are :  

   ''

0 ,' tn
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ww eCCCC    at y′ = 0 
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     CCTTtUu ,,'' * at y′ → ∞    (5) 

By using Rosseland approximation, the radiative heat flux is given by  
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 If the temperature difference T - T∞ within the flow is sufficiently small, the Taylor 

series for T
4
 neglecting higher order terms is given by a linear temperature function :  

   
434 34   TTTT         (7) 

 In view of the equations (6) and (7), equation (3) reduces to :  
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 From the continuity Eq. (1), it is clear that the suction velocity normal to the plate 

which can be considered either a constant or a function of time.  In the fitness of the present 

situation, it is assumed in the form:  

 ''

0 1' tn
eVv          (9) 

the negative sign indicates that the suction is towards the plate.  

 In order to write the governing equations and boundary conditions in non-dimensional 

form, the following non-dimensional scheme is introduced.  
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 By using the Eqs. (9) and (10), Eqs (2), (8) and (4) are reduced to the following 

dimensionless form:  
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 The corresponding dimensionless boundary conditions are :  

u = 1, θ = 1 + εent
, φ = 1 + εent

 at y = 0 
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u → U(t), θ → 0, φ → 0 at y → ∞      (14) 

 Non-linear partial differential equations and these cannot be solved in closed-form.  

However, these equations can be reduced to a set of ordinary differential equations, which 

can be solved analytically.  This can be done by representing the velocity, temperature and 

concentration of the fluid in the neighbourhood of the plate as :  

u(y, t) = u0(y) + εent
u1(y) 

θ(y, t) = θ0(y) + εentθ1(y) 

φ(y, t) = φ0(y) + εentφ1(y) 

also  

U(t) = (1 + εent
)        (15) 

Substituting the equation (15) in the Eqs (11-13), we obtain the following equations by 

considering harmonic and non-harmonic terms while neglecting the higher terms with order 

of 0(ε)2
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Subject to the boundary conditions :  

u0 = 1, θ0 = 1, φ0 = 1, u1 = 0, θ1 = 1, φ1 = 1 at y = 0 

u0 → 1, θ0 → 0, φ0 → 0, u1 → 1, θ1 → 0, φ1 → 0 at y = ∞   (22) 

To solve the non linear-coupled Eqs. (16-21), we further assume that the viscous dissipation 

parameter (Eckert number Ec) is very small for incompressible flows, and therefore, advance 

an asymptotic expansion for the flow velocity, temperature and concentration as follows:  

u0(y) = u01(y) + Ecu02(y) 

θ0(y) = θ01(y) + Ecθ02(y) 

φ0(y) = φ01(y) + Ecφ02(y) 

u1(y) = u11(y) + Ecu12(y) 

θ1(y) = θ11(y) + Ecθ12(y) 

φ1(y) = φ11(y) + Ecφ12(y)       (23) 

Substituting equation (23) into equations (16-21), we obtain the following sequence of 

approximations :  

The zeroth order equations are :  
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Subject to the boundary conditions :  

u01 = 1, u02 = 0, θ01 = 1, θ02 = 0, φ01 = 1, φ02 = 0 on y = 0 

u01 → 1, u02 → 0, θ01 → 1, θ02 → 0, φ01 → 1, φ02 → 0 at y → ∞  (30) 

The first order equations are :  
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Subject to the boundary conditions :  

u11 = 0, u12 = 0, θ11 = 1, θ12 = 0, φ11 = 1, φ12 = 0 on y = 0 

u11 → 1, u12 → 0, θ11 → 0, θ12 → 0, φ11 → 0, φ12 → 0 at y → ∞  (37) 

Solving Eqs. (24-29) under the boundary conditions in Eq. (30) and Eqs. (31-36) 

under the boundary conditions in Eq.(37), and using Eqs. (15) and (23), we obtain the 

velocity temperature and concentration distributions in the boundary layer as :  

  ym

c

ymyNym
eAEeAeAeAtyu 4134

80546 {1,
   

 
ymyNymym

eAeAeAeA 1343 2

76

2

75

2

7473

   

 
     

}143134

797877

ymmyNmyNm
eAeAeA

   

yNymymt
eAeAeAe 335

8712 1[{
    

}212

11109

ymymym
eAeAeA
   

yNymym

c eAeAeAE 335

474672{
   

ymyNym
eAeAeA 134 2

50

2

49

2

48

   

     ymmyNmyNm
eAeAeA 143134

535251

   

     ymmymNymm
eAeAeA 313354

595854

   

   yNmyNyNm
eAeAeA 31334

62

2

6160

   

     ymmyNmymm
eAeAeA 213224

656463

   



IJFANS INTERNATIONAL JOURNAL OF FOOD AND NUTRITIONAL SCIENCES 

ISSN PRINT 2319 1775 Online 2320 7876 

Research Paper   © 2012 IJFANS. All Rights Reserved, UGC CARE Listed ( Group -I) Journal Volume 11, Iss 2, 2022 

1847 

 

   
}]3141

6766

yNmymm
eAeA

   

  yNymyN

c

yN
eAeAeAEety 3433 2

14

2

1319{,
   

 
   yNmyNmym

eAeAeA 31341

1716

2

15

   

 
 

}[{} 3341

2318

yNymtymm
eAeAeeA
    

 
ymyNym

c eAeAeAE 433 2

212045{
   

 
 yNmymyN

eAeAeA 3413

24

2

2322

   

 
     ymmymmyNm

eAeAeA 541431

272625

   

 
     ymmymmymN

eAeAeA 345153

302928

   

     yNmymmymN
eAeAeA 343133

333231

   

 
   ymmyNmyN

eAeAeA 24313

3635

2

34

   

   ymmymyNm
eAeAeA 24131

42

2

4140

   

   
}]2132

4443

ymmyNm
eAeA

   

   ][, 2221

1

ymymymtym
eeAeeety
    

 Here, we examine the nature of velocity and temperature profiles for different values 

of various physical parameters associated with the problem under consideration.  Eqs (24-29) 

with the help of Eq.(30) and the Eqs (3-36) with the help of Eq.(37) are solved numerically in 

PDE Solver.  The velocity and temperature profiles are obtained for various parameters like 

magnetic parameters, porosity parameter, free convection parameter, chemical reaction 

parameter, Schmidt number and Eckert number, frequency of excitation and radiation 

parameter, while the values of some physical parameters are fixed as real constant ε = 0.1, 

Prandt1 number Pr = 0.71 to represent air and time parameter t = 0.75.  

 

Result and Discussion: 

1 Effect of magnetic parameters on velocity and temperature profiles  

 In figs (1) and (2), temperature and velocity profiles are shown for different values of 

M.  It does not have too much effect on temperature and velocity profiles.   

2 Effect of porosity parameter on velocity and temperature profiles 

 Figures (3 and 4) show the effect of porosity parameter K on temperature profiles and 

velocity profiles. As K increases, considerable enhancement is observed in temperature and 

velocity profiles, respectively.  It is seen that porosity parameter has strong effect on velocity 

profiles in comparison to temperature profiles.  After displacement value (y = 25), the 

temperature variations are negligible and velocity starts fluctuating for all values of K.   

3 Effect of Grashof number, chemical reaction parameter, Schmidt number and 

Eckert number on temperature profiles 

 From Figs (5), (7) (9) and (11), we can see that Grashof number Gr, chemical reaction 

parameter Kr, Schmidt number Sc, Eckert number Ec, don’t have appreciable effects on 

temperature profiles.  It is approximately converging to the value of 0.039327 at 

displacement y = 21, for all values of parameters.  
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4 Effect of Grashof number on velocity profiles 

 Figure 6 shows velocity variations with Gr (thermal Grashof number) in cases of 

heating of the surface. It is found that the velocity profiles increase with increase of Grashof 

number.  Finally, it is found that in the case of heating of plate, near the surface of the plate, 

the velocity profiles increase and become maximization and then decrease on moving away 

from the plate.  

 

5 Effect of chemical reaction parameter on velocity profiles 

 Figure 8 shows that near the surface of the plate, velocity is strongly increasing and 

reaches its maximum value and then decreases with respect to displacement y, however, the 

destructive chemical reaction (Kr > 0) has not too much effect on velocity profiles.  

 
Fig. 1 – Effect of magnetic parameter on temperature field 

 

 
Fig.2 – Effect of magnetic parameter on velocity field  
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Fig. 3 – Contribution of porosity parameter on temperature field 

 
Fig. 4 – Contribution of porosity parameter on velocity field 

 
Fig. 5 – Effect of free convection parameter on temperature field 
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Fig. 6 – Effect of free convection parameter on velocity field 

 
Fig. 7 – Effect of chemical reaction parameter on temperature field 

 
Fig. 8 – Effect of Chemical reaction parameter on velocity field 
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