ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

ON β -OPEN SETS IN TOPOLOGICAL SPACES

H. K. Tripathi

Govt.Women's Polytechnic College Jabalpur (India) tripathihk1@gmail.com

Abstract: In this paper, we have studied β -Open sets in topological space. We have obtained some significant properties of β -Open sets and constructed various examples.

Keywords: Topological spaces, interior, closure, open set, semi-closed set.

Definition 1.6.1[1]: Let (X, τ) be a topological space and let $A \subseteq X$. Then A is said to be β —open set if $A \subseteq Cl$ (Int (Cl (A)).

Remark 1.6.1: In a topological space (X, τ) the empty set \emptyset and whole set X are β —open sets.

Example 1.6.1: Let $X = \{x_1, x_2, x_3\}$ be the topological space with respect to topology $\tau = \{\emptyset, X, \{x_1\}, \{x_1, x_3\}\}$ on X. Let us consider the set $A = \{x_1, x_2\}$ in X. We see that Int(Cl(A)) = X. This gives Cl(Int(Cl(A))) = X. Therefore $A \subseteq Cl(Int(Cl(A)))$ and hence A is $a\beta$ —open set in X.

Proposition 1.6.1: In a topological space (X, τ) each open set is β -open but not the converse.

Proposition 1.6.2: In a topological space (X, τ) each α – open set is β – open but not the converse.

Proposition 1.6.3: In a topological space (X, τ) each semi-open set is β -open but not the converse.

Proposition 1.6.4: In a topological space (X, τ) each pre- open set is β -open but not the converse.

Theorem1.6.1 [1]: Let (X, τ) be a topological space and let $A \subseteq X$. Then A is β -open if and only if Cl(A) = Cl(Int(Cl(A))).

Proposition 1.6.5 [1]: In a topological space (X, τ) arbitrary union of β -open sets is β -open.

Remark 1.6.2: In a topological space (X, τ) intersection of two β -open sets may not be β -open. Thus the family of all β -open sets in (X, τ) need not a topology on X.

Theorem1.6.2 [1]: Let (X, τ) be a topological space and let $A \subseteq X$. Then A is β -open if and only if for each $x \in A$ there exists a β -open set U in X such that $x \in U \subseteq A$.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

Definition 1.6.2 [7]: Let (X, τ) be a topological space and let $A \subseteq X$. Then union of all β -open sets in X contained in A is called β -interior of A. The β -interior of A is denoted by $\beta i(A)$.

Remark 1.6.3: We note that $\beta i(A)$ is the largest β -open set in (X, τ) contained in A.

Proposition 1.6.6: Let(X, τ) be a topological space and let $A \subseteq X$. Then A is β -open if and only if $\beta i(A) = A$.

Proposition 1.6.7: Let(X, τ) be a topological space and let A, B be subsets of X. Then following properties holds:

- (i) $\beta i(\phi) = \phi, \beta i(X) = X.$
- (ii) If $A \subseteq B$ then $\beta i(A) \subseteq \beta i(B)$.
- (ii) $\beta i(A) \cup \beta i(B) \subseteq \beta i(A \cup B)$.
- (iii) $\beta i(A \cap B) \subseteq \beta i(A) \cap \beta i(B)$.
- (iv) $\beta i (\beta i(A)) = \beta i(A)$.

Proposition 1.6.8: Let (X, τ) be a topological space and let $\{A_{\infty}\}_{{\infty} \in \Lambda}$ be a family of ssubsets of X. Then

- (i) $\bigcup_{\alpha \in \Lambda} \beta i (A_{\alpha}) \subseteq \beta i (\bigcup_{\alpha \in \Lambda} A_{\alpha}).$
- (ii) $\beta i \left(\bigcap_{\alpha \in \Lambda} A_{\alpha} \right) \subseteq \bigcap_{\alpha \in \Lambda} \beta i \left(A_{\alpha} \right).$

Definition 1.6.3[1]: Let (X, τ) be a topological space and $A \subseteq X$. Then *A* is said to be β -closed set if X - A is β -open set in *X*.

Remark1.6.4: In a topological space (X, τ) the empty set \emptyset and whole set X are β – closed sets.

Proposition 1.6.9: In a topological space (X, τ) each closed set is β -closed but not the converse.

Proposition 1.6.10: In a topological space (X, τ) each α – closed set is β -closed but not the converse.

Proposition1.6.11: In a topological space (X, τ) each semi-closed set is β -closed but not the converse.

Proposition 1.6.12: In a topological space (X, τ) each pre-closed set is β -closed but not the converse.

Theorem1.6.3 [1]: Let (X, τ) be a topological space and let $A \subseteq X$. Then following are equivalent:

- (i) $A \text{ is } \beta \text{closed.}$
- (ii) $Int(Cl(Int(A))) \subseteq A$.

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

(iii)
$$Int(A) = Int(Cl(Int(A))).$$

Proposition 1.6.13 [1]: In a topological space (X, τ) arbitrary intersection of β – closed sets is β – closed.

Remark 1.6.5: In a topological space (X, τ) union of two β - closed sets may not be β - closed set in X.

Definition 1.6.4 [7]: Let (X, τ) be a topological space and let $A \subseteq X$. Then intersection of all β -closed sets in X containing A is called β -closure of A. The β -closure of A is denoted by $\beta c(A)$.

Remark 1.6.6: We note that $\beta c(A)$ is the smallest β -closed set in (X, τ) containing A.

Proposition 1.6.14: Let (X, τ) be a topological space and $A \subseteq X$. Then A is β -closed set if and only if $\beta c(A) = A$.

Proposition 1.6.15: Let (X, τ) be a topological space and let A, B be subsets of X. Then following properties holds:

- (i) $\beta c(\phi) = \phi, \beta c(X) = X.$
- (ii) If $A \subseteq B$ then $\beta c(A) \subseteq \beta c(B)$.
- (iii) $\beta c(A) \cup \beta c(B) \subseteq \beta c(A \cup B)$.
- (iv) $\beta c(A \cap B) \subseteq \beta c(A) \cap \beta c(B)$.
- (v) $\beta c (\beta c(A)) = \beta c(A)$.

Proposition 1.6.16: Let (X, τ) be a topological space and let $\{A_{\alpha}\}_{{\alpha} \in \Lambda}$ be a family of subsets of X. Then

- (i) $\bigcup_{\alpha \in \Lambda} \beta c (A_{\alpha}) \subseteq \beta c (\bigcup_{\alpha \in \Lambda} A_{\alpha}).$
- (ii) $\beta c(\bigcap_{\alpha \in \Lambda} A_{\alpha}) \subseteq \bigcap_{\alpha \in \Lambda} \beta c(A_{\alpha}).$

Proposition 1.6.17:Let (X, τ) be a topological space and let $A \subseteq X$. Then

- (i) $\beta i (X A) = X \beta c(A)$.
- (ii) $\beta c(X A) = X \beta i$ (A)

Remark 1.6.10: We can summaries the above results in this section in the following diagram:

ISSN PRINT 2319 1775 Online 2320 7876

Research Paper © 2012 IJFANS. All Rights Reserved, UGC CARE Listed (Group -I) Journal Volume 11, Iss 12, 2022

References:

- [1] Abd-El-Monsef, M.E., El- Deeb, S. and Mahmoud, R.A., β -open and β continuous mappings, Bull.Fact. 12 (1983). 77-90.
- [2] Abd-El-Monsef, M.E., Lashien, E.F. and Nasef, A.A., On I-open sets and I- continuous functions, Kyungpook, Math. J., 32 (1992), 21-30.
- [3] Acikgoz, A., Noiri, T. and Yüksel S., A decomposition of continuity in ideal topological spaces, Acta Math. Hungar. 105(4) (2004) 285-289.
- [4] Acikgoz, A., Noiri, T., and Yuskel, S., On α -I-continuous and α -I-open functions, Acta Math. Hungar, 105 (1-2), (2004), 27-37.
- [5] Alagar, R., Nearly c-compact spaces with respect to an ideal Varahmihir Journal of Mathematical Sciences, 5 (2005),153-158.
- [6] Andrejevic, D., Some properties of the topology of α sets, Mat. Vasnik, 36 (1984), 1-10.
- [7] Andrijevic D., Semi-preopen sets. Mat Vesnik 38 (1986) 24 –32

