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Abstract—  

This research introduces an innovative approach to modeling Spark Ignition (SI) engines by 

combining deep learning techniques with the Design of Experiments (DOE) framework. 

Conventional SI engine models often depend on complex physical equations or empirical 

correlations, which are computationally demanding and may fall short in fully capturing engine 

dynamics across diverse operating conditions. To address these challenges, this study develops 

a data-driven SI engine model designed to accurately predict both performance and emission 

characteristics. A structured DOE methodology will be applied to generate a comprehensive 

dataset covering a broad spectrum of input parameters, such as engine speed, load, spark 

timing, and air–fuel ratio. This carefully designed dataset will serve as the foundation for 

training and validating advanced deep learning models, including Artificial Neural Networks 

(ANNs), Recurrent Neural Networks (RNNs), and Convolutional Neural Networks (CNNs), 

selected based on the nature of the input features. 

Index Terms—Modelling, Deep Learning, DOE, ANN, RNN, CNN 

I. INTRODUCTION 

The ongoing drive for enhanced fuel efficiency and lower emissions in internal combustion 

engines—particularly Spark Ignition (SI) engines—demands advanced control strategies and 

highly accurate predictive models. Traditional physics-based approaches, while fundamental, 

often fall short in capturing the complex, non-linear interactions that govern SI engine behavior 

across a wide range of operating conditions. These challenges are further amplified by 

variations in fuel properties, ambient environments, and long-term engine wear. As a result, 

optimizing performance and emissions through empirical testing remains a costly and time-

intensive process, typically requiring extensive Design of Experiments (DOE) campaigns. 

In recent years, deep learning has emerged as a transformative tool for modeling complex 

systems characterized by high-dimensional, nonlinear data. Its superior pattern recognition and 

predictive capabilities make it well-suited to the intricate dynamics of SI engines. This research 

proposes the development of a novel deep learning-based SI engine model designed to 

overcome the limitations of conventional methods. By employing advanced neural network 

architectures, the model aims to deliver accurate predictions of critical performance parameters 

and emissions, achieving both higher fidelity and greater computational efficiency. 

Moreover, this study emphasizes the integration of deep learning with a DOE framework, 

enabling systematic exploration of the engine’s operating space and rapid identification of 
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optimal parameter settings. Such an approach has the potential to significantly accelerate 

calibration and control processes, reducing reliance on resource-intensive experimentation. 

As the global push for sustainable transportation intensifies, SI engines continue to play a 

pivotal role in the automotive sector. Achieving simultaneous gains in fuel economy, power 

output, and emissions compliance requires precise modeling of their inherently complex and 

dynamic operation. Conventional first-principles or empirical models often lack the accuracy 

needed for this task, thereby prolonging calibration and optimization efforts. By harnessing the 

synergy of deep learning and DOE, this research aims to address these limitations, paving the 

way for more efficient, cleaner, and smarter powertrain technologies. 

II. LITERATURE REVIEW 

Sok et. al states that physical sensors are commonly used to record performance data of 

internal combustion engines (ICEs) for online feedback control and calibration, but they are 

prone to diagnostic and increased development costs. Lookup tables are commonly used in 

conventional calibration and feedback control; however, the table parameters increase with the 

advancement of ICE technologies under transient operations. Consequently, the calibration and 

control systems are time-consuming. This work proposes novel virtual sensors to address these 

issues by predicting the combustion, performance, and emission of ICEs using neural networks 

and image processing/ translation. The novel sensors are targeted for onboard feedback control 

systems under transient driving. Firstly, a virtual diesel engine (VDE) was developed and 

calibrated against experimental data taken from a production 2.2 L turbocharged diesel engine. 

The VDE was calibrated under WLTC, JC08, and NEDC transient operations and was used to 

generate teaching data. Next, the virtual sensors are developed using five machine learning 

(ML) regressors. The result shows that the coefficient of determination R2 from all ML 

regressors exceeded 0.94, and the XG-Boost outperforms other ML techniques with R2 > 

0.977. XG-Boost parameter estimations were 8 times faster than that on a desktop simulation. 

Then, an image classification model using a deep convolutional neural network (D-CNN) is 

constructed, and the dependency of performance parameters and exhaust emissions with the 

rate of heat release (R.H.R) and in-cylinder pressure profile is confirmed. The performance 

parameters and emissions dependency was compared individually with R.H.R. and the in-

cylinder pressure profile. As a result, a strong correlation between the performance and R.H.R. 

was observed. Finally, a generative adversarial network (GAN) model was constructed to 

translate the in-cylinder pressure profile to R.H.R. profile. A novel method to develop virtual 

sensors for advanced feedback control of any type of ICEs is proposed for the first time. [1] 

Badra et. al. states that gasoline compression ignition (GCI) engines are considered an 

attractive alternative to traditional spark-ignition and diesel engines. In this work, a Machine 

Learning-Grid Gradient Ascent (ML-GGA) approach was developed to optimize the 

performance of internal combustion engines. ML offers a pathway to transform complex 

physical processes that occur in a combustion engine into compact informational processes. 

The developed ML-GGA model was compared with a recently developed Machine Learning-

Genetic Algorithm (ML-GA). Detailed investigations of optimization solver parameters and 

variable limit extension were performed in the present ML-GGA model to improve the 

accuracy and robustness of the optimization process. Detailed descriptions of the different 
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procedures, optimization tools, and criteria that must be followed for a successful output are 

provided here. The developed ML-GGA approach was used to optimize the operating 

conditions (case 1) and the piston bowl design (case 2) of a heavy-duty diesel engine running 

on a gasoline fuel with a research octane number (RON) of 80. The ML-GGA approach yielded 

>2% improvements in the merit function, compared with the optimum obtained from a 

thorough computational fluid dynamics (CFD) guided system optimization. The predictions 

from the ML-GGA approach were validated with engine CFD simulations. This study 

demonstrates the potential of ML-GGA to significantly reduce the time needed for optimization 

problems, without loss in accuracy compared with traditional approaches. The global demand 

for energy used in the transportation sector is expected to continue rising at an annual rate of 

1–1.5% by 2040 according to recent projections. This increase is mainly driven by the expected 

rise in population, gross domestic product (GDP), and living standards. Currently, internal 

combustion (IC) engines, fueled by petroleum-derived liquid hydrocarbons (gasoline and 

diesel), dominate the passenger and commercial transportation sectors with over 99% market 

share. IC engines are expected to remain the major source of the transportation energy demand 

in the interim future, despite significant growth in alternative energy and competing 

technologies (e.g., electric and fuel cells). [2] 

Osman et. al. states that the demand for clean and sustainable energy solutions is escalating as 

the global population grows and economies develop. Fossil fuels, which currently dominate 

the energy sector, contribute to greenhouse gas emissions and environmental degradation. In 

response to these challenges, hydrogen storage technologies have emerged as a promising 

avenue for achieving energy sustainability. This review provides an overview of recent 

advancements in hydrogen storage materials and technologies, emphasizing the importance of 

efficient storage for maximizing hydrogen’s potential. The review highlights physical storage 

methods such as compressed hydrogen (reaching pressures of up to 70 MPa) and material-

based approaches utilizing metal hydrides and carboncontaining substances. It also explores 

design considerations, computational chemistry, high-throughput screening, and machine-

learning techniques employed in developing efficient hydrogen storage materials. This 

comprehensive analysis showcases the potential of hydrogen storage in addressing energy 

demands, reducing greenhouse gas emissions, and driving clean energy innovation. Global 

energy demand has been steadily increasing due to factors like population growth, economic 

development, and urbanization. Predictions suggest the world population will reach around 9.7 

billion by 2050, consequently continuing the rise in energy demand. Presently, fossil fuels, 

encompassing coal, oil, and natural gas, account for approximately 80% of the world’s energy 

consumption. [3] 

Fleitmann et. al. states that co-design of alternative fuels and future spark-ignition (SI) engines 

allows very high engine efficiencies to be achieved. To tailor the fuel’s molecular structure to 

the needs of SI engines with very high compression ratios, computer-aided molecular design 

(CAMD) of renewable fuels has received considerable attention over the past decade. To date, 

CAMD for fuels is typically performed by computationally screening the physicochemical 

properties of single molecules against property targets. However, achievable SI engine 

efficiency is the result of the combined effect of various fuel properties, and molecules should 
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not be discarded because of individual unfavorable properties that can be compensated for. 

Therefore, we present an optimization-based fuel design method directly targeting SI engine 

efficiency as the objective function. Specifically, we employ an empirical model to assess the 

achievable relative engine efficiency increase compared to conventional RON95 gasoline for 

each candidate fuel as a function of fuel properties. For this purpose, we integrate the automated 

prediction of various fuel properties into the fuel design method: Thermodynamic properties 

are calculated by COSMO-RS; combustion properties, indicators for environment, health and 

safety, and synthesizability are predicted using machine learning models. The method is 

applied to design pure-component fuels and binary ethanol-containing fuel blends. The optimal 

pure-component fuel tert-butyl formate is predicted to yield a relative efficiency increase of 

approximately 8% and the optimal fuel blend with ethanol and 3,4-dimethyl-3-propan-2-yl-1-

pentene of 19%. The molecular structure of a fuel is a crucial degree of freedom for sustainable 

mobility. [4] 

Huang et. al. states that with the increasing global concern for environmental protection and 

sustainable resource utilization, sustainable engine performance has become the focus of 

research. This study conducts a sensitivity analysis of the key parameters affecting the 

performance of sustainable engines, aiming to provide a scientific basis for the optimal design 

and operation of engines to promote the sustainable development of the transportation industry. 

The performance of an engine is essentially determined by the combustion process, which in 

turn depends on the fuel characteristics and the work cycle mode suitability of the technical 

architecture of the engine itself (oil-engine synergy). Currently, there is a lack of theoretical 

support and means of reference for the sensitivity analysis of the core parameters of oil–engine 

synergy. Recognizing the problems of unclear methods of defining sensitivity parameters, 

unclear influence mechanisms, and imperfect model construction, this paper proposes an 

evaluation method system composed of oil–engine synergistic sensitivity factor determination 

and quantitative analysis of contribution. [5] 

III. PROPOSED SYSTEM 

The development of a deep learning–based model for Spark Ignition (SI) engines is expected 

to deliver substantially higher predictive accuracy for both performance and emissions 

compared to conventional empirical or statistical approaches. When combined with a Design 

of Experiments (DOE) framework, this model will also enable the efficient identification of 

optimal operating parameters, thereby reducing the need for extensive experimental testing. 

Specifically, the proposed deep learning model will achieve superior prediction accuracy—

reflected in lower RMSE values and higher R-squared metrics—for key SI engine performance 

indicators such as brake torque and brake-specific fuel consumption (BSFC), as well as 

emissions including NOx, CO, and HC. Unlike traditional models, it will be capable of 

effectively capturing the complex, nonlinear interactions among critical input variables such as 

spark timing, air–fuel ratio, engine speed, and load. Furthermore, by integrating the model with 

DOE methodologies, it will systematically and reliably identify optimal or near-optimal 

parameter settings that balance efficiency with stringent emission requirements. 
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IV. OBJECTIVES OF PROPOSED SYSTEM 

Following are the objectives in which the work will be achieved 

• To design, generate, and validate a robust deep learning-based model for Spark Ignition 

(SI) engines, capable of accurately predicting performance and emissions 

• To demonstrate its utility within a Design of Experiments (DOE) framework for optimized 

engine parameter selection. 

• To design and train a deep learning model capable of accurately predicting key SI engine 

performance parameters (e.g., brake torque, brake specific fuel consumption, indicated 

mean effective pressure) and emission constituents.  

• To analyze the response surfaces generated by the deep learning model within the DOE 

context, providing insights into the sensitivities and interactions of various engine control 

parameters. 

V. RESEARCH METHODOLOGY 

A. Data Acquisition and Pre-processing 

• To obtain a comprehensive, high-quality dataset representing diverse SI engine operating 

conditions for deep learning model training and validation. 

• Utilize an instrumented SI engine test bench (e.g., single-cylinder research engine or multi-

cylinder production engine). The setup will include sensors for measuring:  

• Data Collection Strategy:  

• DOE-guided Data Collection: Employ a preliminary DOE approach (e.g., fractional 

factorial design or D-optimal design) to systematically vary key input parameters (e.g., 

engine speed, load, spark timing, AFR) and ensure comprehensive coverage of the engine's 

operating map. This ensures that the collected data is maximally informative for model 

training. 

• Collect data at steady-state and potentially transient conditions (if time-series modeling is 

pursued). 

• Ensure multiple repetitions at selected points to assess repeatability and quantify 

measurement noise. 

Data Pre-processing:  

• Cleaning: Identify and remove outliers, sensor noise, and erroneous readings. 

• Normalization/Scaling: Apply appropriate scaling techniques (e.g., Min-Max scaling, 

Standardization) to input and output features to optimize deep learning model training 

stability and performance. 

• Feature Engineering (if applicable): Create new features from existing ones if they enhance 

model performance (e.g., pressure rise rate from cylinder pressure, exhaust gas 

recirculation (EGR) if applicable). 

• Data Splitting: Divide the pre-processed dataset into training (e.g., 70-80%), validation 

(e.g., 10-15%), and testing (e.g., 10-15%) sets to ensure unbiased model evaluation. 
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B. Deep Learning Model Design and Development 

• To design, train, and optimize a deep learning model capable of accurately predicting SI 

engine performance and emissions. 

o Architecture Selection: Explore and select candidate deep learning architectures based on 

the nature of the data and problem complexity. This may include:  

▪ Feedforward Neural Networks (FNN/MLP): For static mapping of inputs to outputs. 

▪ Recurrent Neural Networks (RNNs) / LSTMs / GRUs: If transient engine behavior and 

time-series data are considered. 

▪ Convolutional Neural Networks (CNNs): Potentially for feature extraction from raw sensor 

signals or for image-based combustion analysis (if applicable). 

▪ Ensemble Models: Combining multiple deep learning models for improved robustness. 

o Model Training:  

▪ Initialize model weights and biases. 

▪ Select appropriate loss functions (e.g., Mean Squared Error for regression tasks). 

▪ Choose an optimizer (e.g., Adam, RMSprop). 

▪ Train the model using the training dataset, monitoring performance on the validation set to 

prevent overfitting. 

o Hyperparameter Tuning: Systematically optimize hyperparameters (e.g., number of layers, 

neurons per layer, learning rate, batch size, activation functions, regularization techniques 

like dropout) using techniques such as:  

▪ Grid Search or Randomized Search. 

▪ Bayesian Optimization for more efficient tuning. 

C. Model Validation and Performance Evaluation 

• To rigorously assess the predictive accuracy, generalization capability, and robustness of 

the developed deep learning model. 

o Performance Metrics: Evaluate the model's performance on the unseen test dataset using 

standard regression metrics:  

▪ R2 (Coefficient of Determination) 

▪ RMSE (Root Mean Squared Error) 

▪ MAE (Mean Absolute Error) 

▪ MAPE (Mean Absolute Percentage Error) 

o Comparative Analysis: Compare the performance of the deep learning model against 

established empirical or statistical models (e.g., polynomial regression, traditional engine 

maps) developed from the same dataset to highlight its advantages. 
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o Sensitivity Analysis: Conduct sensitivity analysis on the trained deep learning model to 

understand the relative importance of different input parameters on engine outputs. 

Techniques like SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable 

Model-agnostic Explanations) can be employed for interpretability. 

D. Integration with Design of Experiments (DOE) 

• To demonstrate the deep learning model's utility as a surrogate for physical experimentation 

within a DOE framework, enabling efficient optimization. 

o DOE Design using DL Model:  

▪ Define the experimental factors (engine control parameters) and their ranges. 

▪ Choose a suitable DOE design (e.g., Central Composite Design, Box-Behnken Design) to 

construct virtual experimental points using the trained deep learning model. 

▪ Use the deep learning model to predict the responses (performance and emissions) for these 

virtual design points. 

o Response Surface Modelling:  

▪ Develop response surface models (e.g., polynomial regression models) based on the deep 

learning model's predictions from the DOE. 

▪ Analyse the response surfaces to identify optimal operating conditions and visualize the 

interactions between parameters. 

o Optimization:  

▪ Apply optimization algorithms (e.g., desirability function approach, genetic algorithms) to 

the response surface models to find optimal engine settings that meet multiple performance 

and emission targets simultaneously. 

▪ Compare the results (optimized parameters and predicted outcomes) with traditional DOE 

outcomes from physical experimentation, if available, or with literature. 

VI. GENERATE THE DEEP LEARNING ENGINE MODEL FOR YOUR VIRTUAL 

VEHICLE: 

• Start the Virtual Vehicle Composer application. Enter this command in the MATLAB® 

Command Window. 

• virtualVehicleComposer 

• On the Composer tab, click New 

• On the Setup pane, select Vehicle class to be Passenger car and select a Powertrain 

architecture having an SI engine, such as Conventional Vehicle. Set Model template and 

Vehicle dynamics as desired. 

• Click Configure. The app will prepare the vehicle data. 

• On   the   left   side   of   the Data   and   Calibration pane, select Powertrain > Engine. 

• On the Engine tab, select SI Deep Learning Engine. 
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• Click the Calibrate from Data tab. 

• Select the data source file to use to train your engine model. You can use data acquired by 

physical testing, or generated by Powertrain Blockset from Gamma Technologies LLC 

engine models or other high-fidelity engine models. 

• Click Calibrate to initiate the training. Model generation can take several hours. 

o During model generation, the training progress window shows how the deep learning loss 

function (cost function) varies vs. iterations. You can also stop the training process from 

this window. When processing is complete, the Stop button turns green. 

Note that the training may stop before reaching its scheduled number of iterations if it reaches 

its loss tolerance first. 

VII. RESULT 

 

Fig. 1 Generation of epochs 

Once the app has completed training the model, you can view the results in the workspace 

window under five separate tabs. 

• The first is pairwise overlays that show “test versus train dataset input” at steady state. Use 

these to check that the data used to train and to test the model span the same space, with 

roughly the same density. 

 

Fig. 2 Test vs train dataset input 

https://www.gtisoft.com/gt-power/
https://www.gtisoft.com/gt-power/
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The next two show the seven engine input signals the deep learning model uses to test its ability 

to re-create the output responses 

 

 

 

Fig. 3 Engine input signals 

The next tab checks the model capability. Its four plots each display the test data in blue and the 

SI engine deep learning model predicted output in red. 
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Fig.4  Predicted deep learning model 

The histograms under the fifth tab display the modeling error distribution for the four engine 

outputs, under dynamic (transient) conditions. The error is the difference between the response 

predicted by the deep learning model and the measured test response of the engine. 

 

Fig. 5 Histogram of modelling error distribution 

VIII. CONCLUSION 

This research highlights the strong potential of combining deep learning with Design of 

Experiments (DOE) for advanced Spark Ignition (SI) engine modeling. By surpassing the 

constraints of conventional physics-based and empirical methods, the proposed data-driven 

framework delivers a more accurate and holistic representation of engine behavior under 

diverse operating conditions. The strategic application of DOE facilitated the creation of a 

comprehensive and representative dataset, essential for training a range of deep learning 

architectures—from Artificial Neural Networks (ANNs) to specialized models such as 

Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). This 

integrated methodology enables precise prediction of critical performance and emissions 

parameters while mitigating the computational burden and limited flexibility often encountered 

in traditional approaches. Ultimately, the study introduces a robust and efficient predictive tool 

that supports improved engine design, optimized control strategies, and the advancement of 

intelligent virtual sensing technologies for SI engines. 
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