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Abstract 

Linear stability of a fluid saturated porous medium heated from below is studied when the fluid 

and solid phases are not in local thermal equilibrium. The Darcy model which includes Coriolis 

term and permeability is employed as a momentum equation. The critical Rayleigh number for 

the onset of convection using linear stability analysis is found numerically as a function 

interphase heat transfer coefficient, aspect ratio.The effect of porosity modified conductivity 

ratio, diffusivity ratio, interphase heat transfer coefficient on the stability of the system is 

investigated. 

 

8.1 Introduction 

Basic understanding of natural convection in a non-Newtonian fluid-saturated porous medium is 

of interest in many engineering applications such as material processing, petroleum, chemical 

and nuclear industries, geophysics, bioengineering and reservoir engineering. The performance 

of a reservoir depends to a large extent upon the physical nature of crude oil present in the 

reservoir. The light crude is essentially Newtonian and is studied extensively using the Darcy 

equation. On the other hand, the heavy crude is non-Newtonian and a study of such fluids is 

based on a generalized Darcy equation, which takes into account the non-Newtonian effects. 

Such an equation is useful in the study of mobility control in oil displacement mechanism, which 

improves the efficiency of the oil recovery. Furthermore, some oil sand contains waxy crude at 

shallow depths of the reservoirs, which are considered to be viscoelastic fluids. In such 

situations, a viscoelastic model of a fluid will be more realistic than the Newtonian model. 

Besides, viscoelastic models are interesting because they fit quite well the data found in 

experiments of many polymeric fluids.  

 Since elastic behaviour is inherent in non-Newtonian fluids, it may be expected that oscillatory 

convection will sets up in such fluids. However, little if any attention was paid to the onset of 

oscillatory convection, which is the most dangerous mode for viscoelastic fluids. The 

corresponding problem in the case of a porous medium has also not received much attention. 

Mathematical Formulation 

We consider a sparsely packed porous layer of depth d, saturated with a viscoelastic fluid 

describable by the Maxwell model, which is heated from below and cooled from above. The 

lower surface is held at a temperature lT , while the upper surface is at uT )( ul TT  . We assume 

that the solid and fluid phases of the medium are not in local thermal equilibrium and use a two-

field model for temperatures.  
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The basic  equations governing the infinitesimal perturbations in the form, 
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to obtain non-dimensional equations as (on dropping the asterisks for simplicity), 
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1
, the porosity modified conductivity ratio. 

Since the fluid and solid phases are not in thermal equilibrium, the use of appropriate thermal 

boundary conditions may pose a difficulty. However, the assumption that the solid and fluid 

phases have equal temperatures at the bounding surfaces made earlier helps in overcoming this 

difficulty. Accordingly, Equations (6)-(8) are solved for impermeable isothermal boundaries. 

Hence the boundary conditions are  

  
2

2
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       at 0 and 1z  ,       (9) 

  0 sf TT        at 0 and 1z  .                              (10) 

 Linear stability analysis 

 

 We assume the normal mode solutions for the eigen value problem defined by Equations  (5)-

(8) subject to the boundary conditions (9) and (10) in the form 
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where l and m are the horizontal wave numbers and   is the growth rate. Substituting Equations 

(11) into Equations (9)-(10) we obtain 
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The boundary conditions now become, 
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We assume the solution to  and,W  in the form, 
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which satisfy the boundary conditions (15). Substituting Equation  (16) we obtain the following 

matrix equation 
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where 2 2 2
a    is the total wave number. 

For the nontrivial solution of the above matrix equation (17), we require 
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Setting ii   in Equation (18) and clearing the complex quantities from the denominator, we 

obtain 

 1 2iRa i   ,            (19) 
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Since Ra  is a physical quantity, it must be real. Hence, from Equation (21) it follows that either 

0i  (steady onset) or 02   ( 0i , oscillatory onset). 

(i) Stationary convection 

 The steady convection occurs when 0i   and in that case Eq.(8.30) gives 
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We observe that the expression for St
Ra  is independent of viscoelastic parameter. Thus, as far as 

the steady onset is concerned, there is no distinction between the viscous fluid and viscoelastic 

fluid. We discuss below  the results about the oscillatory motions. 

 

(ii) Oscillatroy convection 

 For oscillatory onset 02   ( 0i ) and this gives a dispersion relation of the form 
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Now Equation (23) with 02  , gives  
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[Conclusions 

Thermal convection in a horizontal sparsely packed porous layer saturated with a viscoelastic 

fluid of the Maxwell type when the fluid and solid phases are not in local thermal equilibrium is 

investigated analytically. The Lapwood-Brinkman model is used for the momentum equation. 

The conditions for the onset of stationary and oscillatory convection are derived using a linear 

stability theory. Linear stability analysis suggests that, there is a competition between the 

processes of viscous relaxation and thermal diffusion that causes the first convective instability 

to be oscillatory rather than stationary. It is found that the effect of increasing conductivity ratio 

  is to decrease the critical Rayleigh number. The critical wavenumber for the oscillatory mode 

decreases with increasing value of  for moderate values of H, but it increases with increasing 

value of   for large H. The critical Rayleigh number is independent of the interphase heat 

transfer coefficient H for the value of 10 . The critical Rayleigh number is independent of   
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for small H, while for intermediate values of  H, it decreases with increasing  . The increase in 

the thermal diffusivity ratio   is to increase the critical Rayleigh number for the overstable 

mode and thus their effect is to delay the onset of convection. For a fixed value of H, the effect 

of increasing stress relaxation time  is to decrease the critical Rayleigh number. The critical 

wave number remains constant for small and large values of H and for the intermediate values it 

attains the maximum value. The effect of increasing Prandtl number is to destabilize the system. 
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